
iPhone Application Programming Guide
General

2009-01-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon, Cocoa,
iPod, iTunes, Mac, Mac OS, Macintosh,
Objective-C, Pages, Quartz, Safari, Sand, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Finder, iPhone, and Multi-Touch are trademarks
of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 11

Who Should Read This Document? 12
Organization of This Document 12
Providing Feedback 12
See Also 13

Chapter 1 The Core Application 15

Core Application Architecture 15
The Application Life Cycle 15
The Event-Handling Cycle 18
Fundamental Design Patterns 20

The Application Runtime Environment 21
Fast Launch, Short Use 21
The Application Sandbox 21
The Virtual Memory System 22
The Automatic Sleep Timer 22

The Application Bundle 23
The Information Property List 25
Application Icon and Launch Images 27
Nib Files 28

Handling Critical Application Tasks 29
Initialization and Termination 29
Responding to Interruptions 29
Observing Low-Memory Warnings 31

Customizing Your Application’s Behavior 32
Launching in Landscape Mode 32
Communicating with Other Applications 33
Implementing Custom URL Schemes 34
Displaying Application Preferences 37

Internationalizing Your Application 37
Tuning for Performance and Responsiveness 39

Using Memory Efficiently 40
Floating-Point Math Considerations 41
Reducing Power Consumption 42
Tuning Your Code 43

Chapter 2 Window and Views 45

What Are Windows and Views? 45
The Role of UIWindow 45

3
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

The Role of UIView 46
UIKit View Classes 47
The Role of View Controllers 50

View Architecture and Geometry 50
The View Interaction Model 50
The View Rendering Architecture 52
View Coordinate Systems 55
The Relationship of the Frame, Bounds, and Center 56
Coordinate System Transformations 57
Content Modes and Scaling 58
Autoresizing Behaviors 60

Creating and Managing the View Hierarchy 61
Creating a View Object 63
Adding and Removing Subviews 63
Converting Coordinates in the View Hierarchy 65
Tagging Views 66

Modifying Views at Runtime 66
Animating Views 67
Responding to Layout Changes 69
Redrawing Your View’s Content 69
Hiding Views 70

Creating a Custom View 70
Initializing Your Custom View 70
Drawing Your View’s Content 71
Responding to Events 72
Cleaning Up After Your View 73

Chapter 3 Event Handling 75

Events and Touches 75
Event Delivery 77

Responder Objects and the Responder Chain 77
Regulating Event Delivery 78

Handling Multi-Touch Events 79
The Event-Handling Methods 79
Handling Single and Multiple Tap Gestures 80
Detecting Swipe Gestures 81
Handling a Complex Multi-Touch Sequence 82
Event-Handling Techniques 83

Chapter 4 Graphics and Drawing 85

The UIKit Graphics System 85
The View Drawing Cycle 85
Coordinates and Coordinate Transforms 86
Graphics Contexts 87

4
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Points Versus Pixels 87
Color and Color Spaces 88
Supported Image Formats 88

Drawing Tips 89
Deciding When to Use Custom Drawing Code 89
Improving Drawing Performance 89
Maintaining Image Quality 90

Drawing with Quartz and UIKit 90
Configuring the Graphics Context 91
Creating and Drawing Images 92
Creating and Drawing Paths 94
Creating Patterns, Gradients, and Shadings 94

Drawing with OpenGL ES 94
Setting Up a Rendering Surface 95
Best Practices 96
Implementation Details 98
For More Information 102

Applying Core Animation Effects 102
About Layers 103
About Animations 103

Chapter 5 Text and Web 105

About Text and Web Support 105
Text Views 105
Web View 107
Keyboards and Input Methods 108

Managing the Keyboard 110
Receiving Keyboard Notifications 110
Displaying the Keyboard 112
Dismissing the Keyboard 112
Moving Content That Is Located Under the Keyboard 113

Drawing Text 115

Chapter 6 Files and Networking 117

File and Data Management 117
Commonly Used Directories 117
Backup and Restore 118
Getting Paths to Application Directories 119
Reading and Writing File Data 121
File Access Guidelines 124
Saving State Information 125
Case Sensitivity 125

Networking 125
Tips for Efficient Networking 126

5
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Using Wi-Fi 126

Chapter 7 Multimedia Support 127

Using Sound in iPhone OS 127
The Basics: Hardware Codecs, Audio Formats, and Audio Sessions 128
Playing Audio 131
Recording Audio 137
Parsing Streamed Audio 138
Audio Unit Support in iPhone OS 139
Best Practices for iPhone Audio 139

Playing Video Files 141

Chapter 8 Device Support 143

Accessing Accelerometer Events 143
Choosing an Appropriate Update Interval 144
Isolating the Gravity Component from Acceleration Data 145
Isolating Instantaneous Motion from Acceleration Data 145
Getting the Current Device Orientation 146

Getting the User’s Current Location 146
Taking Pictures with the Camera 148
Picking a Photo from the Photo Library 150

Chapter 9 Application Preferences 151

Guidelines for Preferences 151
The Preferences Interface 152
The Settings Bundle 153

The Settings Page File Format 154
Hierarchical Preferences 155
Localized Resources 156

Adding and Modifying the Settings Bundle 156
Adding the Settings Bundle 156
Preparing the Settings Page for Editing 157
Configuring a Settings Page: A Tutorial 157
Creating Additional Settings Page Files 161

Accessing Your Preferences 161
Debugging Preferences for Simulated Applications 162

Document Revision History 163

6
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 The Core Application 15

Figure 1-1 Application life cycle 16
Figure 1-2 The event and drawing cycle 18
Figure 1-3 Processing events in the main run loop 19
Figure 1-4 The Properties pane of a target’s Info window 25
Figure 1-5 The information property list editor 26
Figure 1-6 The flow of events during an interruption 30
Figure 1-7 Defining a custom URL scheme in the Info.plist file 35
Figure 1-8 The Language preference view 38
Table 1-1 Design patterns used by iPhone applications 20
Table 1-2 A typical application bundle 23
Table 1-3 Important keys in the Info.plist file 26
Table 1-4 Responsibilities of the application delegate 29
Table 1-5 Keys and values of the CFBundleURLTypes property 34
Table 1-6 Tips for reducing your application’s memory footprint 40
Table 1-7 Tips for allocating memory 41
Listing 1-1 The main function of an iPhone application 16
Listing 1-2 Handling a URL request based on a custom scheme 35
Listing 1-3 The contents of a language-localized subdirectory 38

Chapter 2 Window and Views 45

Figure 2-1 View class hierarchy 48
Figure 2-2 UIKit interactions with your view objects 51
Figure 2-3 View coordinate system 55
Figure 2-4 Relationship between a view's frame and bounds 56
Figure 2-5 Altering a view's bounds 57
Figure 2-6 View scaled using the scale-to-fill content mode 58
Figure 2-7 Content mode comparisons 59
Figure 2-8 View autoresizing mask constants 61
Figure 2-9 Layered views in the Clock application 62
Figure 2-10 View hierarchy for the Clock application 62
Figure 2-11 Converting values in a rotated view 66
Table 2-1 Autoresizing mask constants 60
Table 2-2 Animatable properties 67
Listing 2-1 Creating a window with views 64
Listing 2-2 Initializing a view subclass 71
Listing 2-3 A drawing method 72
Listing 2-4 Implementing the dealloc method 73

7
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Chapter 3 Event Handling 75

Figure 3-1 A multi-touch sequence and touch phases 76
Figure 3-2 Relationship of a UIEvent object and its UITouch objects 76
Listing 3-1 Detecting a double-tap gesture 80
Listing 3-2 Tracking a swipe gesture in a view 81
Listing 3-3 Handling a complex multi-touch sequence 82

Chapter 4 Graphics and Drawing 85

Table 4-1 Supported image formats 88
Table 4-2 Tips for improving drawing performance 89
Table 4-3 Core graphics functions for modifying graphics state 91
Table 4-4 Usage scenarios for images 93

Chapter 5 Text and Web 105

Figure 5-1 Text classes in the UICatalog application 106
Figure 5-2 A web view 108
Figure 5-3 Several different keyboard types 109
Figure 5-4 Several different keyboards and input methods 110
Figure 5-5 Relative keyboard sizes in portrait and landscape modes 111
Figure 5-6 Adjusting content to accommodate the keyboard 113
Listing 5-1 Handling the keyboard notifications 114

Chapter 6 Files and Networking 117

Table 6-1 Directories of an iPhone application 117
Table 6-2 Commonly used search path constants 120
Listing 6-1 Getting a file-system path to the application’s Documents/ directory 120
Listing 6-2 Converting a property-list object to an NSData object and writing it to storage

122
Listing 6-3 Reading a property-list object from the application’s Documents directory 122
Listing 6-4 Writing data to the application’s Documents directory 123
Listing 6-5 Reading data from the application’s Documents directory 124

Chapter 7 Multimedia Support 127

Figure 7-1 Media player interface with transport controls 141
Table 7-1 Features provided by the audio session interface 129
Table 7-2 Handling audio interruptions 131
Table 7-3 Supported audio units 139
Table 7-4 Audio tips 139
Listing 7-1 Initializing an audio session 130
Listing 7-2 Setting an audio session category 130

8
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 7-3 Creating a sound ID object 132
Listing 7-4 Playing a system sound 132
Listing 7-5 Triggering vibration 133
Listing 7-6 Configuring an AVAudioPlayer object 133
Listing 7-7 Implementing an AVAudioPlayer delegate method 134
Listing 7-8 Controlling an AVAudioPlayer object 134
Listing 7-9 Creating an audio queue object 135
Listing 7-10 Setting the playback level directly 136
Listing 7-11 The AudioQueueLevelMeterState structure 137
Listing 7-12 Playing full-screen movies 141

Chapter 8 Device Support 143

Table 8-1 Common update intervals for acceleration events 144
Listing 8-1 Configuring the accelerometer 143
Listing 8-2 Receiving an accelerometer event 144
Listing 8-3 Isolating the effects of gravity from accelerometer data 145
Listing 8-4 Getting the instantaneous portion of movement from accelerometer data 145
Listing 8-5 Initiating and processing location updates 147
Listing 8-6 Displaying the interface for taking pictures 149
Listing 8-7 Delegate methods for the image picker 149

Chapter 9 Application Preferences 151

Figure 9-1 Organizing preferences using child panes 155
Figure 9-2 Formatted contents of the Root.plist file 157
Figure 9-3 A root Settings page 158
Table 9-1 Preference element types 152
Table 9-2 Contents of the Settings.bundle directory 153
Table 9-3 Root-level keys of a preferences Settings Page file 154
Listing 9-1 Accessing preference values in an application 162

9
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

10
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled iPhone OS Programming Guide.

The iPhone SDK provides the tools and resources needed to create native iPhone applications that appear
as icons on the user’s Home screen. Unlike a web application, which runs in Safari, a native application runs
directly as a standalone executable on an iPhone OS–based device. Native applications have access to all the
features that make the iPhone interesting, such as the accelerometers, location service, and Multi-Touch
interface. They can also save data to the local file system and even communicate with other installed
applications through custom URL schemes.

In iPhone OS, you develop native applications using the UIKit framework. This framework provides fundamental
infrastructure and default behavior that makes it possible to create a functional application in a matter of
minutes. Even though the UIKit framework (and other frameworks on the system) provide a significant amount
of default behavior, they also provide hooks that you can use to customize and extend that behavior.

11
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Who Should Read This Document?

This document is intended for both new and experienced iPhone OS developers who are creating native
iPhone applications. Its purpose is to orient you to the architecture of an iPhone application and to show
you the key customization points in the UIKit and other key system frameworks. Along the way, this document
also provides guidance to help you make appropriate design choices. It also points out additional documents
that may offer advice or further discussion of a given subject.

Although many of the frameworks described in this document are also present in Mac OS X, this document
does not assume any familiarity with Mac OS X or its technologies.

Organization of This Document

This document has the following chapters:

 ■ “The Core Application” (page 15) contains key information about the basic structure of every iPhone
application, including some of the critical tasks every application should be prepared to handle.

 ■ “Window and Views” (page 45) describes the iPhone windowing model and shows you how you use
views to organize your user interface.

 ■ “Event Handling” (page 75) describes the iPhone event model and shows you how to handle Multi-Touch
events.

 ■ “Graphics and Drawing” (page 85) describes the graphics architecture of iPhone OS and shows you how
to draw shapes and images and incorporate animations into your content.

 ■ “Text and Web” (page 105) describes the text support in iPhone OS, including examples of how you
manage the system keyboard.

 ■ “Files and Networking” (page 117) provides guidelines for working with files and network connections.

 ■ “Multimedia Support” (page 127) shows you how to use the audio and video technologies available in
iPhone OS.

 ■ “Device Support” (page 143) shows you how to integrate features such as location tracking, the
accelerometers, and the built-in camera into your application.

 ■ “Application Preferences” (page 151) shows you how to configure your application preferences and
display them in the Settings application.

Providing Feedback

If you have feedback about the documentation, you can provide it using the built-in feedback form at the
bottom of every page.

If you encounter bugs in Apple software or documentation, you are encouraged to report them to Apple.
You can also file enhancement requests to indicate features you would like to see in future revisions of a
product or document. To file bugs or enhancement requests, go to the Bug Reporting page of the ADC
website, which is at the following URL:

12 Who Should Read This Document?
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com/bugreporter/

You must have a valid ADC login name and password to file bugs. You can obtain a login name for free by
following the instructions found on the Bug Reporting page.

See Also

The following documents provide important information that all developers should read prior to developing
applications for iPhone OS:

 ■ iPhoneDevelopment Guide provides important information about the iPhone development process from
the tools perspective. This document covers the configuration of devices and the use of Xcode (and
other tools) for building, running, and testing your software.

 ■ Cocoa Fundamentals Guide provides fundamental information about the design patterns and practices
used to develop iPhone applications.

 ■ iPhone Human Interface Guidelines provides guidance and important information about how to design
your iPhone application’s user interface.

The following reference and conceptual documents provide additional information about key iPhone topics:

 ■ UIKit Framework Reference and Foundation Framework Reference provide reference information for the
classes discussed in this document.

 ■ View Controller Programming Guide for iPhone OS provides information on the use of view controllers in
creating interfaces for iPhone applications.

 ■ Table ViewProgrammingGuide for iPhoneOS provides information about working with table views, which
are used frequently in iPhone applications.

 ■ The Objective-C 2.0 Programming Language introduces Objective-C and the Objective-C runtime system,
which is the basis of much of the dynamic behavior and extensibility of iPhone OS.

See Also 13
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

http://developer.apple.com/bugreporter/

14 See Also
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Every iPhone application is built using the UIKit framework and therefore has essentially the same core
architecture. UIKit provides the key objects needed to run the application and to coordinate the handling of
user input and the display of content on the screen. Where applications deviate from one another is in how
they configure these default objects and also where they incorporate custom objects to augment their
application’s user interface and behavior.

Although customizations to your application’s user interface and basic behavior occur down within your
application’s custom code, there are many customizations that you must make at the highest levels of the
application. Because these application-level customizations affect the way your application interacts with
the system and other applications installed on a device, it is important to understand when you need to act
and when the default behavior is sufficient. This chapter provides an overview of the core application
architecture and the high-level customization points to help you make determinations about when to
customize and when to use the default behavior.

Core Application Architecture

From the time your application is launched by the user, to the time it exits, the UIKit framework manages
the majority of the application’s key infrastructure. An iPhone application receives events continuously from
the system and must respond to those events. Receiving the events is the job of the UIApplication object
but responding to the events is the responsibility of your custom code. In order to understand where you
need to respond to events, though, it helps to understand a little about the overall life cycle and event cycles
of an iPhone application. The following sections describe these cycles and also provide a summary of some
of the key design patterns used throughout the development of iPhone applications.

The Application Life Cycle

The application life cycle constitutes the sequence of events that occurs between the launch and termination
of your application. In iPhone OS, the user launches your application by tapping its icon on the Home screen.
Shortly after the tap occurs, the system displays some transitional graphics and proceeds to launch your
application by calling its main function. From this point on, the bulk of the initialization work is handed over
to UIKit, which loads the application’s user interface and readies its event loop. During the event loop, UIKit
coordinates the delivery of events to your custom objects and responds to commands issued by your
application. When the user performs an action that would cause your application to quit, UIKit notifies your
application and begins the termination process.

Figure 1-1 depicts the simplified life cycle of an iPhone application. This diagram shows the sequence of
events that occur from the time the application starts up to the time it quits. At initialization and termination,
UIKit sends specific messages to the application delegate object to let it know what is happening. During
the event loop, UIKit dispatches events to your application’s custom event handlers. Handling initialization
and termination events is discussed later in “Initialization and Termination” (page 29), and the event handling
process is introduced in“The Event-Handling Cycle” (page 18) and covered in more detail in later chapters.

Core Application Architecture 15
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Figure 1-1 Application life cycle

Your code

User taps application icon

main()

UIApplicationMain() applicationDidFinishLaunching:

System asks application to terminate

Application execution terminates

Event
Loop

UIKit

Handle event

applicationWillTerminate:

The Main Function

In an iPhone application, the main function is used only minimally. Most of the actual work needed to run
the application is handled by the UIApplicationMain function instead. As a result, when you start a new
application project in Xcode, every project template provides an implementation of the standard main
function like the one in “Handling Critical Application Tasks.” The main routine does only three things: it
creates an autorelease pool, it calls UIApplicationMain, and it releases the autorelease pool. With few
exceptions, you should never have to change the implementation of this function.

Listing 1-1 The main function of an iPhone application

#import <UIKit/UIKit.h>

int main(int argc, char *argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

16 Core Application Architecture
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Note: An autorelease pool is used in memory management. It is a Cocoa mechanism used to defer the
release of objects created during a functional block of code. For more information about autorelease pools,
seeMemoryManagement ProgrammingGuide for Cocoa. For specific memory-management guidelines related
to autorelease pools in iPhone applications, see “Allocating Memory Wisely” (page 41).

The UIApplicationMain function at the heart of the preceding listing takes four parameters and uses them
to initialize the application. Although you should never have to change the default values passed into this
function, it is worth explaining their purpose in terms of starting the application. In addition to the argc and
argv parameters passed into main, this function takes two string parameters that identify the principal class
(that is, the class of the application object) and the class of the application delegate. If the value of the
principal class string is nil, UIKit uses the UIApplication class by default. If the value of the application
delegate’s class is nil, UIKit assumes that the application delegate is one of the objects loaded from your
application’s main nib file (which is the case for applications built using the Xcode templates). Setting either
of these parameters to a non-nil value causes the UIApplicationMain function to create an instance of
the corresponding class during application startup and use it for the indicated purpose. Thus, if your application
uses a custom subclass of UIApplication (which is not recommended, but certainly possible), you would
specify your custom class name in the third parameter.

The Application Delegate

Monitoring the high-level behavior of your application is the responsibility of the application delegate object,
which is a custom object that you provide. Delegation is a mechanism used to avoid subclassing complex
UIKit objects, such as the default UIApplication object. Instead of subclassing and overriding methods,
you use the complex object unmodified and put your custom code inside the delegate object. As interesting
events occur, the complex object sends messages to your delegate object. You can use these “hooks” to
execute your custom code and implement the behavior you need.

Important: The delegate design pattern is intended to save you time and effort when creating applications
and is therefore a very important pattern to understand. For an overview of the key design patterns used by
iPhone applications, see “Fundamental Design Patterns” (page 20). For a more detailed description of
delegation and other UIKit design patterns, see Cocoa Fundamentals Guide.

The application delegate object is responsible for handling several critical system messages and must be
present in every iPhone application. The object can be an instance of any class you like, as long as it adopts
the UIApplicationDelegate protocol. The methods of this protocol define the hooks into the application
life cycle and are your way of implementing custom behavior. Although you are not required to implement
all of the methods, every application delegate should implement the methods described in “Handling Critical
Application Tasks” (page 29).

For additional information about the methods of the UIApplicationDelegate protocol, see
UIApplicationDelegate Protocol Reference.

The Main Nib File

Another task that occurs at initialization time is the loading of the application’s main nib file. If the application’s
information property list (Info.plist) file contains the NSMainNibFile key, the UIApplication object
loads the nib file specified by that key as part of its initialization process. The main nib file is the only nib file
that is loaded for you automatically; however, you can load additional nib files later as needed.

Core Application Architecture 17
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Nib files are disk-based resource files that store a snapshot of one or more objects. The main nib file of an
iPhone application typically contains a window object, the application delegate object, and perhaps one or
more other key objects for managing the window. Loading a nib file reconstitutes the objects in the nib file,
converting each object from its on-disk representation to an actual in-memory version that can be manipulated
by your application. Objects loaded from nib files are no different than the objects you create programmatically.
For user interfaces, however, it is often more convenient to create the objects associated with your user
interface graphically (using the Interface Builder application) and store them in nib files rather than create
them programmatically.

For more information about nib files and their use in iPhone applications, see “Nib Files” (page 28). For
additional information about how to specify your application’s main nib file, see “The Information Property
List” (page 25).

The Event-Handling Cycle

After the UIApplicationMain function initializes the application, it starts the infrastructure needed to
manage the application’s event and drawing cycle, which is depicted in Figure 1-2. As the user interacts with
a device, iPhone OS detects touch events and places them in the application’s event queue. The event-handling
infrastructure of the UIApplication object takes each event off the top of this queue and delivers it to the
object that best suited to handle it. For example, a touch event occurring in a button would be delivered to
the corresponding button object. Events can also be delivered to controller objects and other objects indirectly
responsible for handling touch events in the application.

Figure 1-2 The event and drawing cycle

Operating
system

Event queue

Application
object

Application

Core objects

In the iPhone OS Multi-Touch event model, touch data is encapsulated in a single event object (UIEvent).
To track individual touches, the event object contains touch objects (UITouch), one for each finger that is
touching the screen. As the user places fingers on the screen, moves them around, and finally removes them
from the screen, the system reports the changes for each finger in the corresponding touch object.

18 Core Application Architecture
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

When it launches an application, the system creates both a process and a single thread for that application.
This initial thread becomes the application’s main thread and is where the UIApplication object sets up
the main run loop and configures the application’s event-handling code. Figure 1-3 shows the relationship
of the event-handling code to the main run loop. Touch events sent by the system are queued until they can
be processed by the application’s main run loop.

Figure 1-3 Processing events in the main run loop

Main run loop

Event source
event

event

event
event
event

SystemPort

Note: A run loop monitors sources of input for a given thread of execution. When an input source has data
to process, the run loop wakes up the thread and dispatches control to the handler for that input source.
When the handler finishes, control passes back to the run loop, which processes the next event or puts the
thread to sleep if there is nothing more to do. You can install your own input sources, including ports and
timers, on a run loop using the NSRunLoop class of the Foundation framework. For more on NSRunLoop and
run loops in general, see Threading Programming Guide.

The UIApplication object configures the main run loop with an input source that processes touch events
by dispatching them to the appropriate responder objects. A responder object is an object that inherits from
the UIResponder class and that implements one or more methods for processing the different phases of a
touch event. Responder objects in an application include instances of UIApplication, UIWindow, UIView,
and all UIView subclasses. The application typically dispatches events to the UIWindow object representing
the application’s main window. The window object, in turn, forwards the event to its first responder, which
is typically the view object (UIView) on which the touch took place.

In addition to defining the methods you use to handle events, the UIResponder class also defines the
programmatic structure of the responder chain, which is the Cocoa mechanism for cooperative event
handling. The responder chain is a linked series of responder objects in an application, which usually starts
at the first responder. If the first responder object cannot handle the event, it passes it to the next responder
in the chain. The message continues traveling up the chain—toward higher-level responder objects such as
the window, the application, and the application’s delegate—until the event is handled. If the event isn't
handled, it is discarded.

The responder object that handles the event tends to set in motion a series of programmatic actions that
result in the application redrawing all or a portion of its user interface (as well as other possible outcomes,
such as the playing of a sound). For example, a control object (that is, a subclass of UIControl) handles an
event by sending an action message to another object, typically the controller that manages the current set
of active views. While processing the action message, the controller might change the user interface or adjust
the position of views in ways that require some of those views to redraw themselves. When this happens,
the view and graphics infrastructure takes over and processes the required redraw events in the most efficient
manner possible.

Core Application Architecture 19
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

For more information about events, responders, and how you handle events in your own custom objects,
see “Event Handling” (page 75). For information about how windows and views fit into the event-handling
scheme, see “The View Interaction Model” (page 50). For additional information about the graphics
infrastructure and how views are updated, see “The View Drawing Cycle” (page 85).

Fundamental Design Patterns

The design of the UIKit framework incorporates many of the design patterns found in Cocoa applications in
Mac OS X. Understanding these design patterns is crucial to creating iPhone applications, so it is worth taking
a few moments to learn about them. The following sections provide a brief overview of these design patterns.

Table 1-1 Design patterns used by iPhone applications

DescriptionDesign pattern

The Model-View-Controller (MVC) design pattern is a way of dividing your code
into independent functional areas. The model portion defines your application’s
underlying data engine and is responsible for maintaining the integrity of that
data. The view portion defines the user interface for your application and has no
explicit knowledge of the origin of data displayed in that interface. The controller
portion acts as a bridge between the model and view and facilitates updates
between them.

Model-View-Controller

The delegation design pattern is a way of modifying complex objects without
subclassing them. Instead of subclassing, you use the complex object as is and
put any custom code for modifying the behavior of that object inside a separate
object, which is referred to as the delegate object. At pre-defined times, the
complex object then calls the methods of the delegate object to give it a chance
to run its custom code.

Delegation

Controls use the target-action design pattern to notify your application of user
interactions. When the user interacts with a control in a predefined way (such as
by tapping a button), the control sends a message (the action) to an object you
specify (the target). Upon receiving the action message, the target object can then
respond in an appropriate manner (such as by updating application state in
response to the button push).

Target-action

The Objective-C language uses a reference-counted scheme for determining when
to release objects from memory. When an object is first created, it is given a
reference count of 1. Other objects can then use the retain, release, or
autorelease methods of the object to increase and decrease that reference
count appropriately. When an object’s reference count reaches 0, the Objective-C
runtime calls the object’s cleanup routines and then deallocates it.

Managed memory
model

For a more thorough discussion of these design patterns, see Cocoa Fundamentals Guide.

20 Core Application Architecture
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

The Application Runtime Environment

The runtime environment of iPhone OS is designed for the fast and secure execution of programs. The
following sections describe the key aspects of this runtime environment and provide guidance on how best
to operate within it.

Fast Launch, Short Use

The strength of iPhone OS–based devices is their immediacy. A typical user pulls a device out of a pocket or
bag and uses it for a few seconds, or maybe a few minutes, before putting it away again. The user might be
taking a phone call, looking up a contact, changing the current song, or getting some piece of information
during that time.

In iPhone OS, only one foreground application runs at a time. This means that every time the user taps your
application’s icon on the Home screen, your application must launch and initialize itself quickly to minimize
the delay. If your application takes a long time to launch, the user may be less inclined to use it.

In addition to launching quickly, your application must be prepared to exit quickly too. Whenever the user
leaves the context of your application, whether by pressing the Home button or by using a feature that opens
content in another application, iPhone OS tells your application to quit. At that time, you need to save any
unsaved changes to disk and exit as quickly as possible. If your application takes more than 5 seconds to
quit, the system may terminate it outright.

Even though your application does not run in the background when the user switches to another application,
you are encouraged to make it appear as if that is the case. When your application quits, you should save
out information about your application’s current state in addition to any unsaved data. At launch time, you
should look for this state information and use it to restore your application to the state it was in when it was
last used. Doing so provides a more consistent user experience by putting the user right back where they
were when they last used your application. Saving the user’s place in this way also saves time by potentially
eliminating the need to navigate back through multiple screens’ worth of information each time an application
is launched.

The Application Sandbox

For security reasons, iPhone OS restricts an application (including its preferences and data) to a unique
location in the file system. This restriction is part of the security feature known as the application’s “sandbox.”
The sandbox is a set of fine-grained controls limiting an application’s access to files, preferences, network
resources, hardware, and so on. In iPhone OS, an application and its data reside in a secure location that no
other application can access. When an application is installed, the system computes a unique opaque identifier
for the application. Using a root application directory and this identifier, the system constructs a path to the
application’s home directory. Thus an application’s home directory could be depicted as having the following
structure:

/ApplicationRoot/ApplicationID/

The Application Runtime Environment 21
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

During the installation process, the system creates the application’s home directory and several key
subdirectories, configures the application sandbox, and copies the application bundle to the home directory.
The use of a unique location for each application and its data simplifies backup-and-restore operations and
uninstallation. For more information about the application-specific directories created for each application,
see “Commonly Used Directories” (page 117).

Important: The sandbox limits the damage an attacker can cause to other applications and to the system,
but it cannot prevent attacks from happening. In other words, the sandbox does not protect your application
from direct attacks by malicious entities. For example, if there is an exploitable buffer overflow in your
input-handling code and you fail to validate user input, an attacker might still be able to crash your program
or use it to execute the attacker’s code.

The Virtual Memory System

To manage program memory, iPhone OS uses essentially the same virtual memory system found in Mac OS
X. In iPhone OS, each program still has its own virtual address space, but (unlike Mac OS X) its usable virtual
memory is constrained by the amount of physical memory available. This is because iPhone OS does not
write volatile pages to disk when memory gets full. Instead, the virtual memory system frees up nonvolatile
memory, as needed, to make sure the running application has the space it needs. It does this by removing
memory pages that are not being used and that contain read-only contents, such as code pages. Such pages
can always be loaded back into memory later if they are needed again.

If memory continues to be constrained, the system may also send notifications to the running applications,
asking them to free up additional memory. All applications should respond to this notification and do their
part to help relieve the memory pressure. For information on how to handle such notifications in your
application, see “Observing Low-Memory Warnings” (page 31).

The Automatic Sleep Timer

One way iPhone OS attempts to save power is through the automatic sleep timer. If the system does not
detect touch events for an extended period of time, it dims the screen initially and eventually turns it off
altogether. Although most developers should leave this timer on, game developers and developers whose
applications do not use touch inputs can disable this timer to prevent the screen from dimming while their
application is running. To disable the timer, set the idleTimerDisabled property of the shared
UIApplication object to YES.

Because it results in greater power consumption, disabling the sleep timer should be avoided at all costs.
The only applications that should consider using it are mapping applications, games, or applications that do
not rely on touch inputs but do need to display visual content on the device’s screen. Audio applications do
not need to disable the timer because audio content continues to play even after the screen dims. If you do
disable the timer, be sure to reenable it as soon as possible to give the system the option to conserve more
power. For additional tips on how to save power in your application, see “Reducing Power Consumption” (page
42).

22 The Application Runtime Environment
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

The Application Bundle

When you build your iPhone application, Xcode packages it as a bundle. A bundle is a directory in the file
system that groups related resources together in one place. An iPhone application bundle contains the
application executable and any resources used by the application (for instance, the application icon, other
images, and localized content). Table 1-2 lists the contents of a typical iPhone application bundle, which for
demonstration purposes here is called MyApp). This example is for illustrative purposes only. Some of the
files listed in this table may not appear in your own application bundles.

Table 1-2 A typical application bundle

DescriptionFile

The executable file containing your application’s code. The name of this file is the
same as your application name minus the .app extension. This file is required.

MyApp

The settings bundle is a file package that you use to add application preferences
to the Settings application. This bundle contains property lists and other resource
files to configure and display your preferences. See “Displaying Application
Preferences” (page 37) for more information.

Settings.bundle

The 57 x 57 pixel icon used to represent your application on the device home
screen. This icon should not contain any glossy effects. The system adds those
effects for you automatically. This file is required. For information about this image
file, see “Application Icon and Launch Images” (page 27).

Icon.png

The 29 x 29 pixel icon used to represent your application in the Settings application.
If your application includes a settings bundle, this icon is displayed next to your
application name in the Settings application. If you do not specify this icon file,
the Icon.png file is scaled and used instead. For information about this image
file, see “Displaying Application Preferences” (page 37).

Icon-Settings.png

The application’s main nib file contains the default interface objects to load at
application launch time. Typically, this nib file contains the application’s main
window object and an instance of the application delegate object. Other interface
objects are then either loaded from additional nib files or created programmatically
by the application. (The name of the main nib file can be changed by assigning a
different value to the NSMainNibFile key in the Info.plist file. See “The
Information Property List” (page 25) for further information.)

MainWindow.nib

The 480 x 320 pixel image to display when your application is launched. The system
uses this file as a temporary background until your application loads its window
and user interface. For information about this image file, see “Application Icon and
Launch Images” (page 27).

Default.png

The Application Bundle 23
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

DescriptionFile

The 512 x 512 icon for an application that is distributed using ad-hoc distribution.
This icon would normally be provided by the App Store; because applications
distributed in an ad-hoc manner do not go through the App Store, however, it
must be present in the application bundle instead. iTunes uses this icon to represent
your application. (The file you specify for this property should be the same one
you would have submitted to the App Store (typically a JPEG or PNG file), were
you to distribute your application that way. The filename must be the one shown
at left and must not include a filename extension.)

iTunesArtwork

Also known as the information property list, this file is a property list defining key
values for the application, such as bundle ID, version number, and display name.
See “The Information Property List” (page 25) for further information. This file is
required.

Info.plist

Nonlocalized resources are placed at the top level of the bundle directory (sun.png
represents a nonlocalized image file in the example). The application uses
nonlocalized resources regardless of the language setting chosen by the user.

sun.png (or other
resource files)

Localized resources are placed in subdirectories with an ISO 639-1 language
abbreviation for a name plus an .lproj suffix. (For example, the en.lproj,
fr.lproj, and es.lproj directories contain resources localized for English,
French, and Spanish.) For more information, see “Internationalizing Your
Application” (page 37).

en.lproj

fr.lproj

es.lproj

other
language-specific
project directories

An iPhone application should be internationalized and have a language.lproj folder for each language it
supports. In addition to providing localized versions of your application’s custom resources, you can also
localize your application icon (Icon.png), default image (Default.png), and Settings icon
(Icon-Settings.png) by placing files with the same name in your language-specific project directories.
Even if you provide localized versions, however, you should always include a default version of these files at
the top-level of your application bundle. The default version is used in situations where a specific localization
is not available.

You use the methods of the NSBundle class or the functions associated with the CFBundleRef opaque type
to obtain paths to localized and nonlocalized image and sound resources stored in the application bundle.
For example, to get a path to the image file sun.png (shown in “Responding to Interruptions” (page 29))
and create an image file from it would require two lines of Objective-C code:

NSString* imagePath = [[NSBundle mainBundle] pathForResource:@"sun"
ofType:@"png"];
UIImage* sunImage = [[UIImage alloc] initWithContentsOfFile:imagePath];

Calling the mainBundle class method returns an object representing the application bundle. For information
on loading resources, see Resource Programming Guide.

24 The Application Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

The Information Property List

The information property list is a file named Info.plist that is included with every iPhone application
project created by Xcode. It is a property list whose key-value pairs specify essential runtime-configuration
information for the application. The elements of the information property list are organized in a hierarchy in
which each node is an entity such as an array, dictionary, string, or other scalar type.

In Xcode, you can access the information property list by choosing Edit Active Target TargetName from the
Project menu. Then in the target’s Info window, click the Properties control. Xcode displays a pane of
information similar to the example in Figure 1-4.

Figure 1-4 The Properties pane of a target’s Info window

The Properties pane shows you some, but not all, of the properties of the application bundle. When you click
the “Open Info.plist as File” button, or when you select the Info.plist file in your Xcode project, Xcode
displays a property list editor window similar to the one in Figure 1-5. You can use this window to edit the
property values and add new key-value pairs.

The Application Bundle 25
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Figure 1-5 The information property list editor

Xcode automatically sets the value of some of these properties, but others you need to set explicitly. Table
1-3 lists some of the important keys you might want to include in your application’s Info.plist file. For a
complete list of properties you can include in this file, see Runtime Configuration Guidelines.

Table 1-3 Important keys in the Info.plist file

ValueKey

The name to display underneath the application icon. This value should be
localized for all supported languages.

CFBundleDisplayName

An identifier string that specifies the application type of the bundle. This string
should be a uniform type identifier (UTI). For example, if your company name
is Ajax and the application is named Hello, the bundle identifier would be
com.Ajax.Hello.

The bundle identifier is used in validating the application signature.

CFBundleIdentifier

An array of URL types that the application can handle. Each URL type is a
dictionary that defines the schemes (for example , such as http or mailto)
that the application can handle. This property allows applications to register
custom URL schemes.

CFBundleURLTypes

26 The Application Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

ValueKey

A string that specifies the build version number of the bundle. This value is a
monotonically increased string, comprised of one or more period-separated
integers. This value cannot be localized.

CFBundleVersion

A Boolean value that indicates whether the bundle can run on iPhone OS only.
Xcode adds this key automatically and sets its value to true. You should not
change the value of this key.

LSRequiresIPhoneOS

A string that identifies the name of the application’s main nib file. If you want
to use a nib file other than the default one created for your project, associate
the name of that nib file with this key. The name of the nib file should not
include the .nib filename extension.

NSMainNibFile

A string that identifies the style of the status bar as the application launches.
This value is based on the UIStatusBarStyle constants declared in
UIApplication.h header file. The default style is UIBarStyleDefault. The
application can change this initial status-bar style when it finishes launching.

UIStatusBarStyle

A Boolean value that determines whether the status bar is initially hidden
when the application launches. Set it to true to hide the status bar. The default
value is false.

UIStatusBarHidden

A string that identifies the initial orientation of the application’s user interface.
This value is based on the UIInterfaceOrientation constants declared in
the UIApplication.h header file. The default style is UIInterface-
OrientationPortrait.

For more information on launching your application in landscape mode, see
“Launching in Landscape Mode” (page 32).

UIInterface-
Orientation

A Boolean value that indicates whether the application icon already includes
gloss and bevel effects. This property is false by default. Set it to true if you do
not want the system to add these effects to your artwork.

UIPrerenderedIcon

A Boolean value that notifies the system that the application uses the Wi-Fi
network for communication. Applications that use Wi-Fi for any period of time
must set this key to true; otherwise, after 30 minutes, the device shuts down
Wi-Fi connections to save power. Setting this flag also lets the system know
that it should display the network selection dialog when Wi-Fi is available but
not currently being used. The default value is false.

UIRequiresPersistent-
WiFi

Properties with string values that are displayed in the user interface should be localized. Specifically, the
string value in Info.plist should be a key to a localized string in the InfoPlist.strings file of a
language-localized subdirectory. For more information, see “Internationalizing Your Application” (page 37).

Application Icon and Launch Images

The file for the icon displayed in the user’s Home screen has the default name of Icon.png (although the
CFBundleIconFile property in the Info.plist file lets you rename it). It should be a PNG image file
located in the top level of the application bundle. The application icon should be a 57 x 57 pixel image

The Application Bundle 27
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

without any shine or round beveling effects. Typically, the system applies these effects to the icon before
displaying it. You can override that behavior, however, by including the UIPrerenderedIcon key in your
application’s Info.plist file; for more information, see Table 1-3 (page 26).

Note: If you are distributing your application to local users using ad-hoc distribution (instead of going
through the App Store), your bundle should also include a 512 x 512 pixel version of your application icon
in a file called iTunesArtwork. This file provides the icon that iTunes displays when distributing your
application.

The file for the application’s launch image is named Default.png. This image should closely resemble the
application’s initial user interface; the system displays the launch image before an application is ready to
display its user interface, giving users the impression of a quick launch. The launch image should also be a
PNG image file, located in the top level of the application bundle. If the application is launched through a
URL, the system looks for a launch image named Default-scheme.png, where scheme is the scheme of the
URL. If that file is not present, it chooses Default.png instead.

To add an image file to a project in Xcode, choose Add to Project from the Project menu, locate the file in
the browser, and click Add.

Note: In addition to the icons and launch image at the top level of your bundle, you can also include localized
versions of those images in your application’s language-specific project subdirectories. For more information
on localizing resources in your application, see “Internationalizing Your Application” (page 37).

Nib Files

A nib file is a data file that stores a set of “freeze-dried” objects that the application plans to use later.
Applications use nib files most often to store the windows and views that make up their user interface. When
you load a nib file into your application, the nib-loading code turns the contents into real objects that your
application can manipulate. In this way, nib files eliminate the need to create these same objects
programmatically from your code.

Interface Builder is the visual design environment that you use to create nib files. You assemble nib files using
a combination of standard objects (such as the windows and views provided by the UIKit framework) and
custom objects from your Xcode projects. Creating view hierarchies within Interface Builder is a simple matter
of dragging and dropping views in place. You can also configure the attributes of each object using the
inspector window and create connections between objects to define their runtime relationships. All of the
changes you make are subsequently saved to disk as part of your nib file.

At runtime, you load nib files into your application when you need the objects they contain. Typically, you
load a nib file when your user interface changes and you need to display some new views on the screen. If
your application uses view controllers, the view controller handles the nib loading process for you automatically
but you can also load nib files yourself using the methods of the NSBundle class.

For information on how to design your application’s user interface, see iPhone Human Interface Guidelines.
For information on how to create nib files, see Interface Builder User Guide.

28 The Application Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Handling Critical Application Tasks

This section describes the handful of tasks that every iPhone application should perform. These tasks are
part of the overall life cycle of the application and are therefore part of the key ways your application integrates
with iPhone OS. In the worst case, failure to handle some of these tasks could even lead to the termination
of your application by the operating system.

Initialization and Termination

During initialization and termination, the UIApplication class sends appropriate messages to the application
delegate to let it perform any necessary tasks. Although your application is not required to respond to these
messages, nearly all iPhone applications should handle them. Initialization time is where you prepare your
application’s user interface and put the application into its initial running state. Similarly, termination is the
time when you should be writing unsaved data and key application state to disk.

Because one iPhone application must quit before another can be launched, the time it takes to execute your
initialization and termination code should be as small as possible. Initialization time is not the time to start
loading large data structures that you do not intend to use right away. Your goal during startup should be
to present your application’s user interface as quickly as possible, preferably in the state it was in when your
application last quit. If your application requires additional time at launch to load data from the network or
do other tasks that might be slow, you should get your interface up and running first and then launch the
slow task on a background thread. Doing so gives you the opportunity to display a progress indicator or
other feedback to the user to indicate that your application is loading the necessary data or doing something
important.

Table 1-4 lists the methods of the UIApplicationDelegate protocol that you implement in your application
delegate to handle initialization and termination chores. This table also lists some of the key chores you
should perform in each method.

Table 1-4 Responsibilities of the application delegate

DescriptionDelegate method

Use this method to restore the application to the state it was in during
the previous session. You can also use this method to perform any custom
initialization to your application data structures and user interface.

applicationDidFinish-
Launching:

Use this method to save any unsaved data or key application state to
disk. You can also use this method to perform additional cleanup
operations, such as deleting temporary files.

applicationWillTerminate:

Responding to Interruptions

Besides the Home button, which terminates your application, the system can interrupt your application
temporarily to let the user respond to important events. For example, an application can be interrupted by
an incoming phone call, an SMS message, a calendar alert, or by the user pressing the Sleep button on a
device. Whereas a press of the Home button terminates your application, these interruptions may be only

Handling Critical Application Tasks 29
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

temporary. If the user ignores the interruption, your application continues running as before. If the user
decides to take a call or reply to an SMS message, however, the system does proceed to terminate your
application.

Figure 1-6 shows the sequence of events that occurs during the arrival of a phone call, SMS message, or
calendar alert. The steps that immediately follow describe the key points in the sequence in more detail,
including some of the things your application should do in response to each event. This sequence does not
reflect what happens when the user pushes the Sleep/Wake button; that sequence is described after the
steps below.

Figure 1-6 The flow of events during an interruption

Your code

App launch

Begin termination sequence applicationWillTerminate:

A phone, SMS or Calendar
notification arrives

Application terminates

Event
Loop

UIKit

applicationWillResignActive:

Ignore?
Yes

No

applicationDidBecomeActive:

1. The system detects an incoming phone call or SMS message, or a calendar event occurs.

2. The system calls your application delegate’s applicationWillResignActive: method. The system
also disables the delivery of touch events to your application.

Interruptions amount to a temporary loss of control by your application. If such a loss of control might
affect your application’s behavior or cause a negative user experience, you should take appropriate steps
in your delegate method to prevent that from happening. For example, if your application is a game,
you should pause the game. You should also disable timers, throttle back your OpenGL frame rates (if
using OpenGL), and generally put your application into a sleep state. While in the resigned state, your
application continues to run but should not do any significant work.

3. The system displays an alert panel with information about the event. The user can choose to ignore the
event or respond to it.

30 Handling Critical Application Tasks
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

4. If the user ignores the event, the system calls your application delegate’s
applicationDidBecomeActive:method and resumes the delivery of touch events to your application.

You can use this delegate method to reenable timers, throttle up your OpenGL frame rates, and generally
wake up your application from its sleep state. For games that are in a paused state, you should consider
leaving the game in that state until the user is ready to resume play. For example, you might display an
alert panel with controls to resume play.

5. If the user responds to the event, instead of ignoring it, the system calls your application delegate’s
applicationWillTerminate:method. Your application should terminate as usual, saving any needed
contextual information to return the user to the same place in your application upon your next launch.

After terminating your application, the system proceeds to launch the application responsible for the
interruption.

Depending on what the user does while responding to an interruption, the system may launch your application
again when that interruption ends. For example, if the user takes a phone call and then hangs up, the system
relaunches your application. If, while on the call, the user goes back to the Home screen or launches another
application, the system does not relaunch your application.

Important: When the user takes a call and then relaunches your application while on the call, the height of
the status bar grows to reflect the fact that the user is on a call. Similarly, when the user ends the call, the
status bar height shrinks back to its regular size. Your application should be prepared for these changes in
the status bar height and adjust its content area accordingly. View controllers handle this behavior for you
automatically. If you lay out your user interface programmatically, however, you need to take the status bar
height into account when laying out your views and implement the layoutSubviews method to handle
dynamic layout changes.

If the user presses the Sleep/Wake button on a device while running your application, the system calls your
application delegate’s applicationWillResignActive: method, stops the delivery of touch events, and
then puts the device to sleep. When the user wakes the device later, the system calls your application
delegate’s applicationDidBecomeActive:method and begins delivering events to the application again.
As you do with other interruptions, you should use these methods to put your application into a sleep state
(or pause the game) and wake it up again. While in the sleep state, your application should use as little power
as possible.

Observing Low-Memory Warnings

When the system dispatches a low-memory notification to your application, heed the warning. iPhone OS
notifies the frontmost application whenever the amount of free memory dips below a safe threshold. If your
application receives this notification, it must free up as much memory as it can by releasing objects it does
not need or clearing out memory caches that it can recreate easily later.

UIKit provides several ways to receive low-memory notifications, including the following:

 ■ Implement the applicationDidReceiveMemoryWarning: method of your application delegate.

 ■ Override the didReceiveMemoryWarning method in your custom UIViewController subclass.

 ■ Register to receive the UIApplicationDidReceiveMemoryWarningNotification notification.

Handling Critical Application Tasks 31
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Upon receiving any of these notifications, your handler method should respond by immediately freeing up
any unneeded memory. View controllers should purge any views that are currently offscreen, and your
application delegate should release any data structures it can or notify other application objects to release
memory they own.

If your custom objects have known purgeable resources, you can have those objects register for the
UIApplicationDidReceiveMemoryWarningNotification notification and release their purgeable
resources directly. Have these objects register if you have a few objects that manage most of your purgeable
resources and it is appropriate to purge all of those resources. If you have many purgeable objects or want
to coordinate the release of only a subset of those objects, however, you might want to use your application
delegate to release the desired objects.

Important: Like the system applications, your applications should always handle low-memory warnings,
even if they do not receive those warnings during your testing. System applications consume small amounts
of memory while processing requests. When a low-memory condition is detected, the system delivers
low-memory warnings to all running programs (including your application) and may terminate some
background applications (if necessary) to ease memory pressure. If not enough memory is released—perhaps
because your application is leaking or still consuming too much memory—the system may still terminate
your application.

Customizing Your Application’s Behavior

There are several ways to customize your basic application behavior to provide the user experience you want.
The following sections describe some of the customizations that you must make at the application level.

Launching in Landscape Mode

Applications in iPhone OS normally launch in portrait mode to match the orientation of the Home screen. If
you have an application that runs in both portrait and landscape modes, your application should always
launch in portrait mode initially and then let its view controllers rotate the interface as needed based on the
device’s orientation. If your application runs in landscape mode only, however, you must perform the following
steps to make it launch in a landscape orientation initially.

 ■ In your application’s Info.plist file, add the UIInterfaceOrientation key and set its value to the
landscape mode. You can set the value of this key to UIInterfaceOrientationLandscapeLeft or
UIInterfaceOrientationLandscapeRight.

 ■ Lay out your views in landscape mode and make sure that their autoresizing options are set correctly.

 ■ Override your view controller’s shouldAutorotateToInterfaceOrientation: method and return
YES only for the desired landscape orientation and NO for portrait orientations.

32 Customizing Your Application’s Behavior
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Important: The preceding steps assume your application uses view controllers to manage its view hierarchy.
View controllers provide a significant amount of infrastructure for handling orientation changes as well as
other complex view-related events. If your application is not using view controllers—as may be the case with
games and other OpenGL ES–based applications—you are responsible for rotating the drawing surface (or
adjusting your drawing commands) as needed to present your content in landscape mode.

The UIInterfaceOrientation key provides a hint to iPhone OS that it should set the orientation of the
application status bar (if one is displayed) and your the views in any view controllers at launch time. In iPhone
OS 2.1 and later, view controllers respect this key and set their view’s initial orientation to match. Using this
key is also equivalent to calling the setStatusBarOrientation:animated: method of UIApplication
early in the execution of your applicationDidFinishLaunching: method.

Note: To launch a view controller–based application in landscape mode in versions of iPhone OS prior to
v2.1, you need to apply a 90 degree rotation to the transform of the application’s root view in addition to all
the preceding steps. Prior to iPhone OS 2.1, view controllers did not automatically rotate their views based
on the value of the UIInterfaceOrientation key. This step is not necessary in iPhone OS 2.1 and later,
however.

Communicating with Other Applications

If an application handles URLs of a known type, you can use that URL scheme to communicate with the
application. In most cases, however, URLs are used simply to launch another application and have it display
some information that is relevant to your own application. For example, if your application manages address
information, you could send a URL containing a given address to the Maps application to show that location.
This level of communication creates a much more integrated environment for the user and alleviates the
need for your application to implement features that exist elsewhere on the device.

Apple provides built-in support for the http, mailto, tel, and smsURL schemes. It also supports http–based
URLs targeted at the Maps, YouTube, and iPod applications. Applications can register their own custom URL
schemes as well. To communicate with an application, create an NSURL object with some properly formatted
content and pass it to the openURL: method of the shared UIApplication object. The openURL: method
launches the application that has registered to receive URLs of that type and passes it the URL. When the
user subsequently quits that application, the system often relaunches your application but may not always
do so. The decision to relaunch an application is made based on the user’s actions in the handler application
and whether returning to your application would make sense from the user’s perspective.

The following code fragment illustrates how one application can request the services of another application
(“todolist” in this example is a hypothetical custom scheme registered by an application):

NSURL *myURL = [NSURL
URLWithString:@"todolist://www.acme.com?Quarterly%20Report#200806231300"];
[[UIApplication sharedApplication] openURL:myURL];

Customizing Your Application’s Behavior 33
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Important: If your URL type includes a scheme that is identical to one defined by Apple, the Apple-provided
application is launched instead of your application. If multiple third-party applications register to handle the
same URL scheme, it is undefined as to which of the applications is picked to handle URLs of that type.

If your application defines its own custom URL scheme, it should implement a handler for that scheme as
described in “Implementing Custom URL Schemes” (page 34). For more information about the
system-supported URL schemes, including information about how to format the URLs, see Apple URL Scheme
Reference.

Implementing Custom URL Schemes

You can register URL types for your application that include custom URL schemes. A custom URL scheme is
a mechanism through which third-party applications can interact with each other and with the system.
Through a custom URL scheme, an application can make its services available to other applications.

Registering Custom URL Schemes

To register a URL type for your application, you must specify the subproperties of the CFBundleURLTypes
property, which was introduced in “The Information Property List” (page 25). The CFBundleURLTypes
property is an array of dictionaries in the application’s Info.plist file, with each dictionary defining a URL
type the application supports. Table 1-5 describes the keys and values of a CFBundleURLTypes dictionary.

Table 1-5 Keys and values of the CFBundleURLTypes property

ValueKey

A string that is the abstract name for the URL type. To ensure uniqueness, it is
recommended that you specify a reverse-DNS style of identifier, for example,
com.acme.myscheme.

The URL-type name provided here is used as a key to a localized string in the
InfoPlist.strings file in a language-localized bundle subdirectory. The
localized string is the human-readable name of the URL type in a given language.

CFBundleURLName

An array of URL schemes for URLs belonging to this URL type. Each scheme is a
string. URLs belonging to a given URL type are characterized by their scheme
components.

CFBundleURLSchemes

Figure 1-7 shows the Info.plist file of an application being edited using the built-in Xcode editor. In this
figure, the URL types entry in the left column is equivalent to the CFBundleURLTypes key you would add
directly to an Info.plist file. Similarly, the “URL identifier” and “URL Schemes” entries are equivalent to the
CFBundleURLName and CFBundleURLSchemes keys.

34 Customizing Your Application’s Behavior
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Figure 1-7 Defining a custom URL scheme in the Info.plist file

After you have registered a URL type with a custom scheme by defining the CFBundleURLTypes property,
you can test the scheme in the following way:

1. Build, install, and run your application.

2. Go to the Home screen and launch Safari. (In the iPhone simulator you can go to the Home screen by
selecting Hardware > Home from the menu.)

3. In the address bar of Safari, type a URL that uses your custom scheme.

4. Verify that your application launches and that the application delegate is sent a
application:handleOpenURL: message.

Handling URL Requests

The delegate of an application handles URL requests routed to the application by implementing the
application:handleOpenURL: method. You especially need the delegate to implement this method if
you have registered custom URL schemes for your application.

A URL request based on a custom scheme assumes a kind of protocol understood by those applications
requesting the services of your application. The URL contains information of some kind that the
scheme-registering application is expected to process or respond to in some way. Objects of the NSURL class,
which are passed into the application:handleOpenURL: method, represent URLs in the Cocoa Touch
framework. NSURL conforms to the RFC 1808 specification; it includes methods that return the various parts
of a URL as defined by RFC 1808, including user, password, query, fragment, and parameter string. The
“protocol” for your custom scheme can use these URL parts for conveying various kinds of information.

In the implementation of application:handleOpenURL: shown in Listing 1-2, the passed-in URL object
conveys application-specific information in its query and fragment parts. The delegate extracts this
information—in this case, the name of a to-do task and the date the task is due—and with it creates a model
object of the application.

Listing 1-2 Handling a URL request based on a custom scheme

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

Customizing Your Application’s Behavior 35
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

 if ([[url scheme] isEqualToString:@"todolist"]) {
 ToDoItem *item = [[ToDoItem alloc] init];
 NSString *taskName = [url query];
 if (!taskName || ![self isValidTaskString:taskName]) { // must have a
task name
 [item release];
 return NO;
 }
 taskName = [taskName
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

 item.toDoTask = taskName;
 NSString *dateString = [url fragment];
 if (!dateString || [dateString isEqualToString:@"today"]) {
 item.dateDue = [NSDate date];
 } else {
 if (![self isValidDateString:dateString]) {
 [item release];
 return NO;
 }
 // format: yyyymmddhhmm (24-hour clock)
 NSString *curStr = [dateString substringWithRange:NSMakeRange(0,
4)];
 NSInteger yeardigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(4, 2)];
 NSInteger monthdigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(6, 2)];
 NSInteger daydigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(8, 2)];
 NSInteger hourdigit = [curStr integerValue];
 curStr = [dateString substringWithRange:NSMakeRange(10, 2)];
 NSInteger minutedigit = [curStr integerValue];

 NSDateComponents *dateComps = [[NSDateComponents alloc] init];
 [dateComps setYear:yeardigit];
 [dateComps setMonth:monthdigit];
 [dateComps setDay:daydigit];
 [dateComps setHour:hourdigit];
 [dateComps setMinute:minutedigit];
 NSCalendar *calendar = [NSCalendar currentCalendar];
 NSDate *itemDate = [calendar dateFromComponents:dateComps];
 if (!itemDate) {
 [dateComps release];
 return NO;
 }
 item.dateDue = itemDate;
 [dateComps release];
 }

 [(NSMutableArray *)self.list addObject:item];
 [item release];
 return YES;
 }
 return NO;
}

36 Customizing Your Application’s Behavior
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Be sure to validate the input you get from URLs passed to your application; see Validating Input in Secure
CodingGuide to find out how to avoid problems related to URL handling. To learn about URL schemes defined
by Apple, see Apple URL Scheme Reference.

Displaying Application Preferences

If your application uses preferences to control various aspects of its behavior, how you expose those
preferences to the user depends on how integral they are to your program.

 ■ Preferences that are integral to using the application (and simple enough to implement directly) should
be presented directly by your application using a custom interface.

 ■ Preferences that are not integral, or that require a relatively complex interface, should be into the system’s
Settings application.

When determining whether a set of preferences is integral, think about the intended usage pattern. If you
expect the user to make changes to preferences somewhat frequently, or if those preferences play a relatively
important role in how the application behaves, they are probably integral. For example, the settings in a
game are usually integral to playing the game and something the user might want to change quickly. Because
the Settings application is a separate application, however, you would use it only for preferences that you
do not expect the user to access frequently.

If you choose to implement preferences inside your application, it is up to you to define the interface and
write the code to manage those preference. If you choose to use the Settings application, however, your
application must provide a Settings bundle to manage them.

A settings bundle is a custom resource you include in the top level of your application’s bundle directory.
An opaque directory with the name Settings.bundle, the settings bundle contains specially formatted
data files (and supporting resources) that tell the Settings application how to display your preferences. These
files also tell the Settings application where to store the resulting values in the preferences database, which
your application then accesses using the NSUserDefaults or CFPreferences APIs.

If you implement your preferences using a settings bundle, you should also provide a custom icon for your
preferences. The Settings application looks for an image file with the name Icon-Settings.png at the top
level of your application bundle and displays that image next to your application name. The image file should
be a 29 x 29 pixel PNG image file. If you do not provide this file at the top level of your application bundle,
the Settings application uses a scaled version of your application icon (Icon.png) by default.

For more information about creating a Settings bundle for your application, see “Application Preferences” (page
151).

Internationalizing Your Application

Ideally, the text, images, and other content that iPhone applications display to users should be localized for
multiple languages. The text that an alert dialog displays, for example, should be in the preferred language
of the user. The process of preparing a project for content localized for particular languages is called
internationalization. Project components that are candidates for localization include:

 ■ Code-generated text, including locale-specific aspects of date, time, and number formatting

 ■ Static text—for example, an HTML file loaded into a web view for displaying application help

Internationalizing Your Application 37
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

 ■ Icons (including your application icon) and other images when those images either contain text or have
some culture-specific meaning

 ■ Sound files containing spoken language

 ■ Nib files

Using the Settings application, users select the language they want to see in applications' user interfaces
from the Language preferences view (see Figure 1-8) They get to this view from the International group of
settings, accessed from General settings.

Figure 1-8 The Language preference view

The chosen language is associated with a subdirectory of the bundle. The subdirectory name has two
components: an ISO 639-1 language code and a .lproj suffix. The language code may also modified with
a particular region by appending (after an underscore) an ISO 3166-1 region designator. For example, to
designate resources localized to English as spoken in the United States, the bundle would be named
en_US.lproj. By convention, these language-localized subdirectories are called lproj folders.

Note: You may use ISO 639-2 language codes instead of those defined by ISO 639-1. See “Language and
Locale Designations” in Internationalization Programming Topics for descriptions of language and region
codes.

An lproj folder contains all the localized content for a given language and, possibly, a given region. You
use the facilities of the NSBundle class or the CFBundle opaque type to locate (in one of the application’s
lproj folders) resources localized for the currently selected language. Listing 1-3 gives an example of such
a directory containing content localized for English (en).

Listing 1-3 The contents of a language-localized subdirectory

en.lproj/

38 Internationalizing Your Application
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

 InfoPlist.strings
 Localizable.strings
 sign.png

This subdirectory example has the following items:

 ■ The InfoPlist.strings file contains strings assigned as localized values of certain properties in the
project’s Info.plist file (such as CFBundleDisplayName). For example, the CFBundleDisplayName
key for an application named Battleship in the English version would have this entry in
InfoPlist.strings in the fr.lproj subdirectory:

CFBundleDisplayName = "Cuirassé";

 ■ The Localizable.strings file contains localized versions of strings generated by application code.

 ■ The sign.png file in this example is a file containing a localized image.

To internationalize strings in your code for localization, use the NSLocalizedString macro in place of the
string. This macro has the following declaration:

NSString *NSLocalizedString(NSString *key, NSString *comment);

The first parameter is a unique key to a localized string in a Localizable.strings file in a given lproj
folder. The second parameter is a comment that indicates how the string is used and therefore provides
additional context to the translator. For example, suppose you are setting the content of a label (UILabel
object) in your user interface. The following code would internationalize the label’s text:

label.text = NSLocalizedString(@"City", @"Label for City text field");

You can then create a Localizable.strings file for a given language and add it to the proper lproj
folder. For the above key, this file would have an entry similar to the following:

"City" = "Ville";

Note: Alternatively, you can insert NSLocalizedString calls in your code where appropriate and then run
the genstrings command-line tool. This tool generates a Localizable.strings template that includes
the key and comment for each string requiring translation. For further information about genstrings, see
the genstrings(1) man page.

To find out more about internationalization, see Internationalization Programming Topics.

Tuning for Performance and Responsiveness

At each step in the development of your application, you should consider the implications of your design
choices on the overall performance of your application. The operating environment for iPhone applications
is more constrained because of the mobile nature of iPhone and iPod touch devices. The following sections
describe the factors you should consider throughout the development process.

Tuning for Performance and Responsiveness 39
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Using Memory Efficiently

Because the iPhone OS virtual memory model does not include disk swap space, applications are somewhat
more limited in the amount of memory they have available for use. Using large amounts of memory can
seriously degrade system performance and potentially cause the system to terminate your application. When
you design, therefore, make it a high priority to reduce the amount of memory used by your application.

There is a direct correlation between the amount of free memory available and the relative performance of
your application. Less free memory means that the system is more likely to have trouble fulfilling future
memory requests. If that happens, the system can always remove code pages and other nonvolatile resources
from memory. However, removing those resources may only be a temporary fix, especially when those
resources are needed again a short time later. Instead, minimize your memory use in the first place, and clean
up the memory you do use in a timely manner.

The following sections provide more guidance on how to use memory efficiently and how to respond when
there is only a small amount of available memory.

Reducing Your Application’s Memory Footprint

Table 1-6 lists some tips on how to reduce your application’s overall memory footprint. Starting off with a
low footprint gives you more room for the data you need to manipulate.

Table 1-6 Tips for reducing your application’s memory footprint

Actions to takeTip

Because memory is a critical resource in iPhone OS, your application should not
have any memory leaks. Allowing leaks to exist means your application may not
have the memory it needs later. You can use the Instruments application to track
down leaks in your code, both in the simulator and on actual devices. For more
information on using Instruments, see Instruments User Guide.

Eliminate memory
leaks.

Files reside on the disk but must be loaded into memory before they can be used.
Property list files and images are two resource types where you can save space
with some very simple actions. To reduce the space used by property list files,
write those files out in a binary format using the NSPropertyList-
Serialization class. For images, compress all image files to make them as small
as possible. (To compress PNG images—the preferred image format for iPhone
applications—use the pngcrush tool.)

Make resource files as
small as possible.

If your application manipulates large amounts of structured data, store it in a
SQLite database instead of in a flat file. SQLite provides efficient ways to manage
large data sets without requiring the entire set to be in memory all at once.

Use SQLite for large
data sets.

You should never load a resource file until it is actually needed. Prefetching
resource files may seem like a way to save time, but this practice actually slows
down your application right away. In addition, if you end up not using the resource,
loading it simply wastes memory.

Load resources lazily.

Adding the -mthumb compiler flag can reduce the size of your code by up to 35%.
Be sure to turn this option off for floating-point-intensive code modules, however,
because the use of Thumb on these modules can cause performance to degrade.

Build your program
using Thumb.

40 Tuning for Performance and Responsiveness
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Allocating Memory Wisely

iPhone applications use a managed memory model, whereby you must explicitly retain and release objects.
Table 1-7 lists tips for allocating memory inside your program.

Table 1-7 Tips for allocating memory

Actions to takeTip

Objects released using the autoreleasemethod stay in memory until you explicitly
drain the autorelease pool or until the next time around your event loop. Whenever
possible, avoid using the autorelease method when you can instead use the
release method to reclaim the memory occupied by the object immediately. If
you must create moderate numbers of autoreleased objects, create a local
autorelease pool and drain it periodically to reclaim the memory for those objects
before the next event loop.

Reduce your use of
autoreleased objects.

Avoid loading large resource files when a smaller one will do. Instead of using a
high-resolution image, use one that is appropriately sized for iPhone OS–based
devices. If you must use large resource files, find ways to load only the portion of
the file that you need at any given time. For example, rather than load the entire
file into memory, use the mmap and munmap functions to map portions of the file
into and out of memory. For more information about mapping files into memory,
see File-System Performance Guidelines.

Impose size limits on
resources.

Unbounded problem sets might require an arbitrarily large amount of data to
compute. If the set requires more memory than is available, your application may
be unable to complete the calculations. Your applications should avoid such sets
whenever possible and work on problems with known memory limits.

Avoid unbounded
problem sets.

For detailed information on how to allocate memory in iPhone applications, and for more information on
autorelease pools, see Cocoa Objects in Cocoa Fundamentals Guide.

Floating-Point Math Considerations

The processors found in iPhone–OS based devices are capable of performing floating-point calculations in
hardware. If you have an existing program that performs calculations using a software-based fixed-point
math library, you should consider modifying your code to use floating-point math instead. Hardware-based
floating-point computations are typically much faster than their software-based fixed-point equivalents.

Tuning for Performance and Responsiveness 41
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Important: Of course, if your code does use floating-point math extensively, remember to compile that code
without the -mthumb compiler option. The Thumb option can reduce the size of code modules but it can
also cause degrade the performance of floating-point code.

Reducing Power Consumption

Power consumption on mobile devices is always an issue. The power management system in iPhone OS
conserves power by shutting down any hardware features that are not currently being used. In addition to
avoiding CPU-intensive operations or operations that involve high graphics frame rates, you can help improve
battery life by minimizing the use of the following features:

 ■ Wi-Fi radios

 ■ The baseband cell radios

 ■ The Core Location framework

 ■ The accelerometers

 ■ The disk

The goal of minimizing your use of these features is not to restrict you unnecessarily as you create your
application. But as you design it, remember that everything you do on a device has implications for the user’s
overall battery life. The more code your application executes, the longer the CPU consumes power. The more
data you transmit to the network, the more power must be used to run the radios. In fact, accessing the
network is the most power-hungry operation you can perform and should be minimized by following these
guidelines:

 ■ Connect to external network servers only when needed, and do not poll.

 ■ When you must connect to the network, transmit the smallest amount of data possible.

 ■ Transmit data in bursts rather than spreading out transmission packets over time. The system turns off
the Wi-Fi and cell radios when it detects a lack of activity. When it transmits data over a longer period
of time, your application uses much more power than when it transmits the same amount of data in a
shorter amount of time.

 ■ If you use the Core Location framework to gather location data, disable location updates as soon as you
have the data you need. Core Location uses the available GPS, cell, and Wi-Fi networks to determine the
user’s location. Although Core Location works hard to minimize the use of these radios, turning off the
feature altogether is the best way to save power.

Optimizing your application’s performance is another good way to minimize the power you use. An application
that does work lazily and uses the least code possible is going to be much more power efficient than an
unoptimized application. A good design can also help minimize the time the user spends inside your
application, which is also a good way to conserve battery life.

42 Tuning for Performance and Responsiveness
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Tuning Your Code

iPhone OS comes with several applications for tuning the performance of your application. Most of these
tools run on Mac OS X and are suitable for tuning some aspects of your code while it runs in the simulator.
For example, you can use the simulator to eliminate memory leaks and make sure your overall memory usage
is as low as possible. You can also remove any computational hotspots in your code that might be caused
by an inefficient algorithm or a previously unknown bottleneck.

After you have tuned your code in the simulator, you should then use the Instruments application to further
tune your code on a device. Running your code on an actual device is the only way to tune your code fully.
Because the simulator runs in Mac OS X, it has the advantage of a faster CPU and more usable memory, so
its performance is generally much better than the performance on an actual device. And using Instruments
to trace your code on an actual device may point out additional performance bottlenecks that need tuning.

For more information on using Instruments, see Instruments User Guide.

Tuning for Performance and Responsiveness 43
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

44 Tuning for Performance and Responsiveness
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Core Application

Windows and views are the visual components you use to construct the interface of your iPhone application.
Windows provide the background platform for displaying content but views do most of the work of drawing
that content and responding to user interactions. Although this chapter covers the concepts associated with
both windows and views, it focuses more on views because of their importance to the system.

Because views play such a vital role in iPhone applications, there is no way to cover every aspect of them in
a single chapter. This chapter focuses on the basic properties of windows and views, their relationships to
each other, and how you create and manipulate them in your application. This chapter does not cover how
views respond to touch events or draw custom content. For more information about those subjects, see
“Event Handling” (page 75) and “Graphics and Drawing” (page 85) respectively.

What Are Windows and Views?

Like Mac OS X, iPhone OS uses windows and views to present graphical content on the screen. Although
there are many similarities between the window and view objects on both platforms, the roles played by
both windows and views differ slightly on each platform.

The Role of UIWindow

In contrast with Mac OS X applications, iPhone applications typically have only one window, represented by
an instance of the UIWindow class. Your application creates this window at launch time (or loads it from a
nib file), adds one or more views to it, and displays it. After that, you rarely need to refer to the window object
again.

In iPhone OS, a window object has no visual adornments such as a close box or title bar and cannot be closed
or manipulated directly by the user. All manipulations to a window occur through its programmatic interfaces.
The application also uses the window to facilitate the delivery of events to your application. For example,
the window object keeps track of its current first responder object and dispatches events to it when asked
to do so by the UIApplication object.

One thing that experienced Mac OS X developers may find unusual about the UIWindow class is its inheritance.
In Mac OS X, the parent class of NSWindow is NSResponder. In iPhone OS, the parent class of UIWindow is
UIView. Thus, in iPhone OS, a window is also a view object. Despite its parentage, you typically treat windows
in iPhone OS the same as you would in Mac OS X. That is, you typically do not manipulate the view-related
properties of a UIWindow object directly.

When creating your application window, you should always set its initial frame size to fill the entire screen.
If you load your window from a nib file, Interface Builder does not permit you to create a window smaller
than the screen size. If you create your window programmatically, however, you must specifically pass in the
desired frame rectangle at creation time. There is no reason to pass in any rectangle other than the screen
rectangle, which you can get from the UIScreen object as shown here:

What Are Windows and Views? 45
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

UIWindow* aWindow = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]] autorelease];

Although iPhone OS supports layering windows on top of each other, your application should never create
more than one window. The system itself uses additional windows to display the system status bar, important
alerts, and other types of messages on top of your application’s windows. If you want to display alerts on
top of your content, use the alert views provided by UIKit rather than creating additional windows.

The Role of UIView

A view, an instance of the UIView class, defines a rectangular area on the screen. In iPhone applications,
views play a key role in both presenting your interface and responding to interactions with that interface.
Each view object has the responsibility of rendering content within its rectangular area and for responding
to touch events in that area. This dual behavior means that views are the primary mechanism for interacting
with the user in your application. In a Model-View-Controller application, view objects obviously are the View
portion of the application.

In addition to displaying its own contents and handling events, a view may also manage one or more subviews.
A subview is simply a view object embedded inside the frame of the original view object, which is referred
to as the parent view or superview. Views arranged in this manner form what is known as a view hierarchy
and may contain any number of views. Views can also be nested at arbitrarily deep levels by adding subviews
to subviews. The organization of views inside the view hierarchy controls what appears on screen, as each
subview is displayed on top of its parent view. The organization also controls how the views react to events
and changes. Each parent view is responsible for managing its direct subviews, by adjusting their position
and size as needed and even responding to events that its subviews do not handle.

Because view objects are the main way your application interacts with the user, they have a number of
responsibilities. Here are just a few:

 ■ Drawing and animation

 ❏ Views draw content in their rectangular area.

 ❏ Some view properties can be animated to new values.

 ■ Layout and subview management

 ❏ Views manage a list of subviews.

 ❏ Views define their own resizing behaviors in relation to their parent view.

 ❏ Views can manually change the size and position of their subviews as needed.

 ❏ Views can convert points in their coordinate system to the coordinate systems of other views or the
window.

 ■ Event handling

 ❏ Views receive touch events.

 ❏ Views participate in the responder chain.

46 What Are Windows and Views?
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

In iPhone applications, views work closely with view controllers to manage several aspects of the views
behavior. View controllers handle the loading and unloading of views, interface rotations caused by the user
physically rotating the device, and interactions with the high-level navigation objects used to construct
complex user interfaces. For more information, see “The Role of View Controllers” (page 50).

Most of this chapter is dedicated to explaining these responsibilities and showing you how to tie your own
custom code into the existing UIView behaviors.

UIKit View Classes

The UIView class defines the basic properties of a view but not its visual representation. Instead, UIKit uses
subclasses to define the specific appearance and behavior for standard system elements such as text fields,
buttons, and toolbars. Figure 2-1 shows the class hierarchy diagram for all of the views in UIKit. With the
exception of the UIView and UIControl classes, most of the views in this hierarchy are designed to be used
as-is or in conjunction with a delegate object.

What Are Windows and Views? 47
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Figure 2-1 View class hierarchy

UIControl

UITableViewCell

UINavigationBar

UIToolbar

UIImageView

UIActivityIndicatorView

UIProgressView

UIPickerView

UILabel

UIWindowUIView

UIResponder

UIAlertView

UIActionSheet

UIWebView

UITabBar

UISearchBar

UIScrollView

UITextView

UITableView

UIDatePicker

UIPageControl

UIButton

UITextField

UISlider

UISegmentedControl

UISwitch

NSObject

This view hierarchy can be broken down into the following broad categories:

 ■ Containers

48 What Are Windows and Views?
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Container views enhance the function of other views or provide additional visual separation of the
content. For example, the UIScrollView class is used to display views whose contents are too large
to fit onscreen all at once. The UITableView class is a subclass of UIScrollView that manages lists of
data. Because table rows are selectable, tables are commonly used for hierarchical navigation too—for
example, to drill down into a hierarchy of objects.

A UIToolbar object is a special type of container that visually groups one or more button-like items. A
toolbar typically appears along the bottom of the screen. The Safari, Mail, and Photos applications all
use toolbars to display buttons representing frequently used commands. Toolbars can be shown all the
time or only as needed by the application.

 ■ Controls

Controls are used to create most of a typical application’s user interface. A control is a special type of
view that inherits from the UIControl superclass. Controls typically display a specific value and handle
all of the user interactions required to modify that value. Controls also use standard system paradigms,
such as target-action and delegation, to notify your application when user interactions occur. Controls
include buttons, text fields, sliders, and switches.

 ■ Display views

Although controls and many other types of views provide interactive behavior, some views simply display
information. The UIKit classes that exhibit this behavior include UIImageView, UILabel,
UIProgressView, and UIActivityIndicatorView.

 ■ Text and web views

Text and web views provide a more sophisticated way to display multiline text content in your application.
The UITextView class supports the display and editing of multiple lines of text in a scrollable area. The
UIWebView class provides a way to display HTML content, which lets you incorporate graphics and
advanced text-formatting options and lay out your content in custom ways.

 ■ Alert views and action sheets

Alert views and action sheets are used to get the user’s attention immediately. They present a message
to the user, along with one or more optional buttons that the user can use to respond to the message.
Alert views and action sheets are similar in function but look and behave differently. For example, the
UIAlertView class displays a blue alert box that pops up on the screen and the UIActionSheet class
displays a box that slides in from the bottom of the screen.

 ■ Navigation views

Tab bars and navigation bars work in conjunction with view controllers to provide tools for navigating
from one screen of your user interface to another. You typically do not create UITabBar and
UINavigationBar items directly but configure them through the appropriate controller interface or
using Interface Builder instead.

 ■ The window

A window provides a surface for drawing content and is the root container for all other views. There is
typically only one window per application. For more information, see “The Role of UIWindow” (page 45).

In addition to views, UIKit provides view controllers to manage those objects. For more information, see “The
Role of View Controllers” (page 50).

What Are Windows and Views? 49
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

The Role of View Controllers

Applications running in iPhone OS have many options for organizing their content and presenting it to the
user. An application that contains a lot of content might divide that content up into multiple screens’ worth
of information. At runtime, each screen would then be backed by a set of view objects responsible for
displaying the data for that particular screen. The views for a single screen would themselves be backed by
a view controller object, whose job is to manage the data displayed by those views and coordinate updates
with the rest of the application.

The UIViewController class is responsible for creating the set of views it manages and for flushing them
from memory during low-memory situations. View controllers also provide automatic responses for some
standard system behaviors. For example, in response to a change in the device's orientation, the view controller
can resize its managed views to fit the new orientation, if that orientation is supported. You can also use
view controllers to display new views modally on top of the current view.

In addition to the base UIViewController class, UIKit includes more advanced subclasses for handling
some of the sophisticated interface behaviors common to the platform. In particular, navigation controllers
manage the display of multiple hierarchical screens worth of content. Tab bar controllers let the user switch
between different sets of screens, each of which represents a different operating mode for the application.

For information on how to use view controllers to manage the views in your user interface, see ViewController
Programming Guide for iPhone OS.

View Architecture and Geometry

Because views are focal objects in iPhone applications, it is important to understand a little about how views
interact with other parts of the system. The standard view classes in UIKit provide a considerable amount of
behavior to your application for free. They also provide well-defined integration points where you can
customize that behavior and do what you need to do for your application.

The following sections explain the standard behavior of views and call out the places where you can integrate
your custom code. For information about the integration points of specific classes, see the reference document
for that class. You can get a list of all the class reference documents in UIKit Framework Reference.

The View Interaction Model

Any time a user interacts with your user interface, or your own code programmatically changes something,
a complex sequence of events takes place inside of UIKit to handle that interaction. At specific points during
that sequence, UIKit calls out to your view classes and gives them a chance to respond on behalf of your
application. Understanding these callout points is important to understanding where your views fit into the
system. Figure 2-2 shows the basic sequence of events that starts with the user touching the screen and ends
with the graphics system updating the screen content in response. Programmatic events follow the same
basic steps without the initial user interaction.

50 View Architecture and Geometry
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Figure 2-2 UIKit interactions with your view objects

Your Application
iPhone OS

Touches

• Buffers
• Images
• Attributes
• Geometry
• Animations

touches

layoutSubviews

drawRect

Draw images, text, etc.Compositor

Touch Framework

Graphics hardware

UIKit

setNeedsDisplay
frame, alpha, etc.

setNeedsLayout
setNeedsDisplay
frame, alpha, etc.

The following steps break the event sequence in Figure 2-2 (page 51) down even further and explain what
happens at each stage and how your application might want to react in response.

1. The user touches the screen.

2. The hardware reports the touch event to the UIKit framework.

3. The UIKit framework packages the touch into a UIEvent object and dispatches it to the appropriate
view. (For a detailed explanation of how UIKit delivers events to your views, see “Event Delivery” (page
77).)

4. The event-handling methods of your view might respond to the event by doing any of the following:

 ■ Adjust the properties (frame, bounds, alpha, and so on) of the view or its subviews.

 ■ Mark the view (or its subviews) as needing a change in its layout.

 ■ Mark the view (or its subviews) as needing to be redrawn.

 ■ Notify a controller about changes to some piece of data.

Of course, it is up to the view to decide which of these things must be done and call the appropriate
methods to do it.

5. If a view is marked as requiring layout, UIKit calls the view’s layoutSubviews method.

You can override this method in your custom views and use it to adjust the position and size of any
subviews. For example, a view that provides a large scrollable area would need to use several subviews
as “tiles” rather than create one large view, which is not likely to fit in memory anyway. In its
implementation of this method, the view would hide any subviews that are now offscreen or reposition
them and use them to draw newly exposed content. As part of this process, the view can also mark the
new tiles as needing to be redrawn.

6. If any part of the view is marked as needing to be redrawn, UIKit calls the view’s drawRect: method.

View Architecture and Geometry 51
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

UIKit calls this method for only those views that need it. Each view’s implementation of this method
should redraw the specified area as quickly as possible. Each view should draw only its own contents
and not the contents of any subviews. Views should not attempt to make any further changes to their
properties or layout at this point.

7. Any updated views are composited with the rest of visible content and sent to the graphics hardware
for display.

8. The graphics hardware transfers the rendered content to the screen.

Note: The preceding update model applies primarily to applications that use native views and drawing
techniques. If your application draws its content using OpenGL ES, you would typically configure a single
full-screen view and then draw directly to your OpenGL graphics context. Your view would still handle touch
events, but it would not need to lay out subviews or implement a drawRect: method. For more information
about using OpenGL ES, see “Drawing with OpenGL ES” (page 94).

Given the preceding set of steps, the primary integration points for your own custom views are as follows:

1. These event-handling methods:

 ■ touchesBegan:withEvent:

 ■ touchesMoved:withEvent:

 ■ touchesEnded:withEvent:

 ■ touchesCancelled:withEvent:

2. The layoutSubviews method

3. The drawRect: method

These are the methods that most custom views implement to get the behavior they want; you may not need
to override all of them. For example, if you are implementing a view whose size never changes, you might
not need to override the layoutSubviews method. Similarly, if you are implementing a view that displays
simple content, such as text and images, you can often avoid drawing altogether by simply embedding
UIImageView and UILabel objects as subviews.

It is also important to remember that these are the primary integration points but not the only ones. Several
methods of the UIView class are designed to be override points for subclassers. You should look at the
method descriptions inUIViewClass Reference to see which methods might be appropriate for you to override
in your custom implementations.

The View Rendering Architecture

Although you use views to represent content onscreen, the UIView class itself actually relies heavily on
another object for much of its basic behavior. Each view object in UIKit is backed by a Core Animation layer
object, which is an instance of the CALayer class. This layer class provides the fundamental support for the
layout and rendering of a view’s contents and for compositing and animating that content.

52 View Architecture and Geometry
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

In contrast with Mac OS X (in which Core Animation support is optional) iPhone OS integrates Core Animation
into the heart of the view rendering implementation. Although Core Animation has a central role, UIKit
streamlines the programming experience by providing a transparent layer on top of Core Animation. This
transparent layer eliminates the need to access Core Animation layers directly most of the time, instead
letting you access similar behaviors using the methods and properties of the UIView class. Where Core
Animation becomes important, however, is when the UIView class does not provide everything you need.
At that point, you can dive down into the Core Animation layers and do some pretty sophisticated rendering
for your application.

The following sections provide an introduction to Core Animation and describe some of the features it
provides to you for free through the UIView class. For more detailed information about how to use Core
Animation for advanced rendering, see Core Animation Programming Guide.

Core Animation Basics

Core Animation takes advantage of hardware acceleration and an optimized architecture to implement fast
rendering and real-time animations. The first time a view’s drawRect: method is called, the layer captures
the results into a bitmap. Subsequent redraw calls use this cached bitmap whenever possible to avoid calling
the drawRect: method, which can be expensive. This process allows Core Animation to optimize its
compositing operations and deliver the desired performance.

Core Animation stores the layers associated with your view objects in a hierarchy referred to as the layer
tree. Like views, each layer in the layer tree has a single parent and can have any number of embedded
sublayers. By default, objects in the layer tree are organized exactly like the views in your view hierarchy. You
can add layers, however, without adding a corresponding view. You might do this to implement special
visual effects for which a view is not required.

Layer objects are actually the driving force behind the rendering and layout system in iPhone OS, and most
view properties are actually thin wrappers for properties on the underlying layer object. When you change
the property of a layer in the layer tree (directly using the CALayer object), the changed value is reflected
immediately in the layer object. If the change triggers a corresponding animation, however, that change
may not be reflected onscreen immediately; instead, it must be animated onto the screen over time. To
manage these sorts of animations, Core Animation maintains two additional sets of layer objects in what are
referred to as the presentation tree and the render tree.

The presentation tree reflects the state of the layers as they are currently presented to the user. When you
animate the changing of a layer value, the presentation layer reflects the old value until the animation
commences. As the animation progresses, Core Animation updates the value in the presentation-tree layer
based on the current frame of the animation. The render tree then works together with the presentation tree
to render the changes on the screen. Because the render tree runs in a separate process or thread, the work
it does does not impact your application’s main run loop. While both the layer tree and the presentation tree
are public, the render tree is a private API.

The placement of layer objects behind your views has many important implications for the performance of
your drawing code. The upside to using layers is that most geometry changes to your views do not require
redrawing. For example, changing the position and size of a view does not require the system to redraw the
contents of a view; it can simply reuse the cached bitmap created by the layer. Animating this cached content
is significantly more efficient than trying to redraw that content every time.

The downside to using layers is that the additional cached data can add memory pressure to your application.
If your application creates too many views or creates very large views, you could run out of memory quickly.
You should not be afraid to use views in your application, but do not create new view objects if you have
existing views that can be reused. In other words, pursue approaches that minimize the number of views
you keep in memory at the same time.

View Architecture and Geometry 53
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

For a more detailed overview of Core Animation, the object trees, and how you create animations, see Core
Animation Programming Guide.

Changing the Layer of a View

Because views are required to have an associated layer object in iPhone OS, the UIView class creates this
layer automatically at initialization time. You can access the layer that is created through the layer property
of the view, but you cannot change the layer object after the view is created.

If you want a view to use a different type of layer, you must override the view’s layerClass class method
and return the class object for the layer you want it to use. The most common reason to return a different
layer class is to implement an OpenGL-based application. To use OpenGL drawing commands, the layer for
the underlying view must be an instance of the CAEAGLLayer class. This type of layer interacts with the
OpenGL rendering calls to present the desired content on the screen.

Important: You should never modify the delegate property of a view’s layer; that property stores a pointer
to the view and should be considered private. Similarly, because a view can operate as the delegate for only
one layer, you must not assign it as the delegate for any other layer objects. Doing so will cause your
application to crash.

Animation Support

One of the benefits of having a layer object behind every view in iPhone OS is that you can animate content
more easily. Remember that animation is not necessarily about creating visual eye candy. Animations provide
the user with a context for any changes that occur in your application’s user interface. For example, when
you use a transition to move from one screen to another, you are indicating to users that the screens are
related. The system provides automatic support for many of the most commonly used animations, but you
can also create animations for other parts of your interface.

Many properties of the UIView class are considered to be animatable. An animatable property is one for
which there is semiautomatic support for animating from one value to another. You must still tell UIKit that
you want to perform the animation, but Core Animation assumes full responsibility for running the animation
once it has begun. Among the properties you can animate on a UIView object are the following:

frame

bounds

center

transform

alpha

Even though other view properties are not directly animatable, you can create explicit animations for some
of them. Explicit animations require you to do more of the work in managing the animation and the rendered
contents, but they still use the underlying Core Animation infrastructure to obtain good performance.

For more information about creating animations using the UIView class, see “Animating Views” (page 67).
For more information about creating explicit animations, see Core Animation Programming Guide.

54 View Architecture and Geometry
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

View Coordinate Systems

Coordinates in UIKit are based on a coordinate system whose origin is in the top-left corner and whose
coordinate axes extend down and to the right from that point. Coordinate values are represented using
floating-point numbers, which allow for precise layout and positioning of content and allow for resolution
independence. Figure 2-3 (page 55) shows this coordinate system relative to the screen, but this coordinate
system is also used by the UIWindow and UIView classes. This particular orientation was chosen to make it
easier to lay out controls and content in user interfaces, even though it differs from the default coordinate
systems in use by Quartz and Mac OS X.

Figure 2-3 View coordinate system

Standard coordinates

y

x
(0,0)

As you write your interface code, be aware of the coordinate system currently in effect. Every window and
view object maintains its own local coordinate system. All drawing in a view occurs relative to the view’s
local coordinate system. The frame rectangle for each view, however, is specified using the coordinate system
of its parent view, and coordinates delivered as part of an event object are specified relative to the coordinate
system of the enclosing window. For convenience, the UIWindow and UIView classes each provide methods
to convert back and forth between the coordinate systems of different objects.

Although the coordinate system used by Quartz does not use the top-left corner as the origin point, for many
Quartz calls this is not a problem. Before invoking your view’s drawRect: method, UIKit automatically
configures the drawing environment to use a top-left origin. Quartz calls made within this environment draw
correctly in your view. The only time you need to consider these different coordinate systems is when you
set up the drawing environment yourself using Quartz.

For more information about coordinate systems, Quartz, and drawing in general, see “Graphics and
Drawing” (page 85).

View Architecture and Geometry 55
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

The Relationship of the Frame, Bounds, and Center

A view object tracks its size and location using its frame, bounds, and center properties. The frame property
contains a rectangle, the frame rectangle, that specifies the view’s location and size relative to its parent
view’s coordinate system. The bounds property contains a rectangle, the bounds rectangle, that defines
the view’s position and size relative to its own local coordinate system. And although the origin of the bounds
rectangle is typically set to (0, 0), it need not be. The center property contains the center point of the frame
rectangle.

You use the frame, bounds, and center properties for different purposes in your code. Because the bounds
rectangle represents the view’s local coordinate system, you use it most often during drawing or event-handling
code when you need to know where in your view something happened. The center point represents the
known center point of your view and is always the best way to manipulate the position of your view. The
frame rectangle is a convenience value that is computed using the bounds and center point and is valid
only when the view’s transform is set to the identity transform.

Figure 2-4 shows the relationship between the frame and bounds rectangles. The complete image on the
right is drawn in the view starting at (0, 0). Because the size of the bounds does not match the full size of the
image, however, only part of the image outside the bounds rectangle is clipped automatically. When the
view is composited with its parent view, the position of the view inside its parent is determined by the origin
of the view’s frame rectangle, which in this case is (5, 5). As a result, the view’s contents appear shifted down
and to the right from the parent view’s origin.

Figure 2-4 Relationship between a view's frame and bounds

Frame rectangle at (5.0, 5.0), size (73.0, 98.0)

Superview

Bounds rectangle at (0.0, 0.0), size (73.0, 98.0)

When there is no transform applied to the view, the location and size of the view are determined by these
three interrelated properties. The frame property of a view is set when a view object is created
programmatically using the initWithFrame: method. That method also initializes the bounds rectangle
to originate at (0.0, 0.0) and have the same size as the view's frame. The center property is then set to the
center point of the frame.

Although you can set the values of these properties independently, setting the value for one changes the
others in the following ways:

 ■ When you set the frame property, the size of the bounds property is set to match the size of the frame
property. The center property is also adjusted to match the center point of the new frame.

 ■ When you set the center property, the origin of the frame changes accordingly.

 ■ When you set the size of the bounds rectangle, the size of the frame rectangle changes to match.

56 View Architecture and Geometry
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

You can change the bounds origin without changing the other two properties. When you do, the view
displays the portion of the underlying image that you have identified. In Figure 2-4 (page 56), the original
bounds origin is set to (0.0, 0.0). In Figure 2-5, that origin is moved to (8.0, 24.0). As a result, a different portion
of the underlying image is displayed by the view. Because the frame rectangle did not change, however, the
new content is displayed in the same location inside the parent view as before.

Figure 2-5 Altering a view's bounds

Note: By default, a view’s frame is not clipped to its parent view’s frame. If you want to force a view to clip
its subviews, set the view’s clipsToBounds property to YES.

Coordinate System Transformations

Although coordinate system transformations are commonly used in a view’s drawRect:method to facilitate
drawing, in iPhone OS, you can also use them to implement visual effects for your view. For example, the
UIView class includes a transform property that lets you apply different types of translation, scaling, and
zooming effects to the entire view. By default, the value of this property is the identity transform, which
causes no changes to the view. To add transformations, get the CGAffineTransform structure stored in
this property, use the corresponding Core Graphics functions to apply the transformations, and then assign
the modified transform structure back to the view’s transform property.

Note: When applying transforms to a view, all transformations are performed relative to the center point of
the view.

Translating a view shifts all subviews along with the drawing of the view's content. Because coordinate
systems of subviews inherit and build on these alterations, scaling also affects the drawing of the subviews.
For more information about how to control the scaling of view content, see “Content Modes and Scaling” (page
58).

View Architecture and Geometry 57
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Important: If the transform property is not the identity transform, the value of the frame property is
undefined and must be ignored. After setting the transform, use the bounds and center properties to get
the position and size of the view.

For information about using transforms in conjunction with your drawRect: method, see “Coordinates and
Coordinate Transforms” (page 86). For information about the functions you use to modify the
CGAffineTransform structure, see CGAffineTransform Reference.

Content Modes and Scaling

When you change the bounds of a view or apply a scaling factor to the transform property of a view, the
frame rectangle is changed by a commensurate amount. Depending on the content mode associated with
the view, the view’s content may also be scaled or repositioned to account for the changes. The view’s
contentMode property determines the effect that bounds changes and scaling operations have on the view.
By default, the value of this property is set to UIViewContentModeScaleToFill, which always causes the
view’s contents to be scaled to fit the new frame size. For example, Figure 2-6 shows what happens when
the horizontal scaling factor of the view is doubled.

Figure 2-6 View scaled using the scale-to-fill content mode

View with transform set Bounds rectangle at (0.0, 0.0), size (73.0, 98.0)

Superview

Scaling of your view’s content occurs because the first time a view is shown, its rendered contents are cached
in the underlying layer. Rather than force the view to redraw itself every time its bounds change or a scaling
factor is applied, UIKit uses the view’s content mode to determine how to display the cached content. Figure
2-7 compares the results of changing the bounds of a view or applying a scaling factor to it using several
different content modes.

58 View Architecture and Geometry
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Figure 2-7 Content mode comparisons

UIViewContentModeScaleToFill

Distorting

Nondistorting

UIViewContentModeScaleAspectFit

UIViewContentModeScaleAspectFill

Nondistorting

Although applying a scaling factor always scales the view’s contents, there are content modes that do not
scale the view’s contents when the bounds of the view change. Several UIViewContentMode constants
(such as UIViewContentModeTop and UIViewContentModeBottomRight) display the current content in
different corners or along different edges of the view. There is also a mode for displaying the content centered
inside the view. Changing the bounds rectangle with one of these content modes in place simply moves the
existing contents to the appropriate location inside the new bounds rectangle.

Do consider using content modes when you want to implement resizable controls in your application; by
doing so you can avoid both control distortion and the writing of custom drawing code. Buttons and
segmented controls are particularly suitable for content mode–based drawing. They typically use several
images to create the appearance of the control. In addition to having two fixed-size end cap images, a button
that can grow horizontally uses a stretchable center image that is only 1 pixel wide. By displaying each image
in its own image view and setting the content mode of the stretchable middle image to
UIViewContentModeScaleToFill, the button can grow in size without distorting the appearance of the
end caps. More importantly, the images associated with each image view can be cached by Core Animation
and animated without any custom drawing code, which results in much better performance.

Although content modes are good to avoid redrawing the contents of your view, you can also use the
UIViewContentModeRedraw content mode when you specifically want control over the appearance of your
view during scaling and resizing operations. Setting your view’s content mode to this value forces Core
Animation to invalidate your view’s contents and call your view’s drawRect: method rather than scale or
resize them automatically.

View Architecture and Geometry 59
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Autoresizing Behaviors

When you change the frame rectangle of a view, the position and size of embedded subviews often needs
to change to match the new size of the original view. If the autoresizesSubviews property of a view is
set to YES, its subviews are automatically resized according to the values in the autoresizingMask property.
(By default, the autoresizesSubviews property is NO, so you need to set this value to YES to use this
feature.) Often, simply configuring the autoresizing mask for a view provides the appropriate behavior for
an application. Otherwise, it is the application's responsibility to reposition and resize the subviews by
overriding the layoutSubviews method.

To set a view’s autoresizing behaviors, combine the desired autoresizing constants using a bitwise OR operator
and assign the resulting value to the view’s autoresizingMask property. Table 2-1 lists the autoresizing
constants and describes how each one affects the size and placement of a given view. For example, to keep
a view pinned to the lower-left corner of its superview, add theUIViewAutoresizingFlexibleRightMargin
and UIViewAutoresizingFlexibleTopMargin constants and assign them to the autoresizingMask
property. When more than one aspect along an axis is made flexible, the resize amount is distributed evenly
among them.

Table 2-1 Autoresizing mask constants

DescriptionAutoresizing mask

If set, the view doesn’t autoresize.UIViewAutoresizingNone

If set, the view’s height changes proportionally to the change in the
superview’s height. Otherwise, the view’s height does not change
relative to the superview’s height.

UIViewAutoresizing-
FlexibleHeight

If set, the view’s width changes proportionally to the change in the
superview's width. Otherwise, the view’s width does not change
relative to the superview’s width.

UIViewAutoresizing-
FlexibleWidth

If set, the view’s left edge is repositioned proportionally to the change
in the superview’s width. Otherwise, the view’s left edge remains in
the same position relative to the superview’s left edge.

UIViewAutoresizing-
FlexibleLeftMargin

If set, the view’s right edge is repositioned proportionally to the change
in the superview’s width. Otherwise, the view’s right edge remains in
the same position relative to the superview.

UIViewAutoresizing-
FlexibleRightMargin

If set, the view’s bottom edge is repositioned proportionally to the
change in the superview’s height. Otherwise, the view’s bottom edge
remains in the same position relative to the superview.

UIViewAutoresizing-
FlexibleBottomMargin

If set, the view’s top edge is repositioned proportionally to the change
in the superview’s height. Otherwise, the view’s top edge remains in
the same position relative to the superview.

UIViewAutoresizing-
FlexibleTopMargin

Figure 2-8 provides a graphical representation of the position of the constant values. When one of these
constants is omitted, the view's layout is fixed in that aspect; when a constant is included in the mask, the
view's layout is flexible in that aspect.

60 View Architecture and Geometry
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Figure 2-8 View autoresizing mask constants

UIViewAutoresizingFlexibleWidth

UIViewAutoresizingFlexibleRightMargin

UIViewAutoresizingFlexibleBottomMargin

UIViewAutoresizingFlexibleHeight

Superview

View

UIViewAutoresizingFlexibleTopMargin

UIViewAutoresizingFlexibleLeftMargin

(0.0, 0.0)

If you are using Interface Builder to configure your views, you can set the autoresizing behavior for each view
by using the Autosizing controls in the Size inspector. Although the flexible width and height constants from
the preceding figure have the same behavior as the Interface Builder springs located in the same position
have, the behavior of the margin constants is effectively reversed. In other words, to apply the flexible right
margin autoresizing behavior to a view in Interface Builder, you must leave the space on that side of the
Autosizing control empty, not place a strut there. Fortunately, Interface Builder provides an animation to
show you how changes to the autoresizing behaviors affect your view.

If the autoresizesSubviews property of a view is set to NO, any autoresizing behaviors set on the immediate
subviews of that view are ignored. Similarly, if a subview’s autoresizing mask is set to
UIViewAutoresizingNone, the subview does not change size and so its immediate subviews are never
resized either.

Note: For autoresizing to work correctly, the view’s transform property must be set to the identity transform.
The behavior is undefined if it is not.

Although autoresizing behaviors may be suitable for some layout needs, if you want more control over the
layout of your views, you should override the layoutSubviews method in the appropriate view classes. For
more information about managing the layout of your views, see “Responding to Layout Changes” (page 69).

Creating and Managing the View Hierarchy

Managing the view hierarchy of your user interface is a crucial part of developing your application’s user
interface. How you organize your views defines not only the way your application appears visually but also
how your application responds to changes. The parent-child relationships in the view hierarchy help define
the chain of objects that is responsible for handling touch events in your application. When the user rotates
the device, parent-child relationships also help define how each view’s size and position are altered by
changes to the user interface orientation.

Figure 2-9 shows a simple example of how the layering of views creates a desired visual effect. In the case
of the Clock application, tab-bar and navigation-bar views are mixed together with a custom view to implement
the overall interface.

Creating and Managing the View Hierarchy 61
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Figure 2-9 Layered views in the Clock application

Navigation bar

Status bar

Window

Tab bar

Custom view

If you look at the object relationships for the views in the Clock application, you see that they look something
like the relationships shown in “Changing the Layer of a View.” The window object acts as the root view for
the application’s tab bar, navigation bar, and custom view.

Figure 2-10 View hierarchy for the Clock application

UIViewUITabBar UINavigationBar

UIWindow

There are several ways to build view hierarchies in iPhone applications, including graphically in Interface
Builder and programmatically in your code. The following sections show you how to assemble your view
hierarchies and, having done that, how to find views in the hierarchy and convert between different view
coordinate systems.

62 Creating and Managing the View Hierarchy
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Creating a View Object

The simplest way to create views is to use Interface Builder and load them from the resulting nib file. From
Interface Builder’s graphical environment, you can drag new views out of the library and drop them onto a
window or another view and build your view hierarchies quickly. Because Interface Builder uses live view
objects, when you build your interface graphically you see exactly how it will appear when you load it at
runtime. And there is no need to write tedious code to allocate and initialize each view in your view hierarchy.

If you prefer not to use Interface Builder and nib files to create your views, you can create them
programmatically. To create a new view object, allocate memory for the view object and send that object
an initWithFrame: message to initialize it. For example, to create a new instance of the UIView class,
which you could use as a container for other views, you would use the following code:

CGRect viewRect = CGRectMake(0, 0, 100, 100);
UIView* myView = [[UIView alloc] initWithFrame:viewRect];

Note: Although all system objects support the initWithFrame: message, some may have a preferred
initialization method that you should use instead. For information about any custom initialization methods,
see the reference documentation for the class.

The frame rectangle that you specify when you initialize the view represents the position and size of the
view relative to its intended parent view. You must add views to a window or to another view to make them
appear on the screen. When you do, UIKit uses the frame rectangle you specify to place the view inside its
parent. For information on how to add views to your view hierarchy, see “Adding and Removing
Subviews” (page 63).

Adding and Removing Subviews

Interface Builder is the most convenient way to build view hierarchies because it lets you see exactly how
those views will appear at runtime. It then saves the view objects and their hierarchical relationships in a nib
file, which the system uses at runtime to recreate the objects and relationships in your application. When a
nib file is loaded, the system automatically calls the UIView methods needed to recreate the view hierarchy.

If you prefer not to use Interface Builder and nib files to create your view hierarchies, you can create them
programmatically instead. A view that has required subviews should create them in its own initWithFrame:
method to ensure that they are present and initialized with the view. Subviews that are part of your application
design (and not required for the operation of your view) should be created outside of your view’s initialization
code. In iPhone applications, the two most common places to create views and subviews programmatically
are the applicationDidFinishLaunching: method of your application delegate and the loadView
method of your view controllers.

To manipulate views in the view hierarchy, you use the following methods:

 ■ To add a subview to a parent, call the addSubview: method of the parent view. This method adds the
subview to the end of the parent’s list of subviews.

 ■ To insert a subview in the middle of the parent’s list of subviews, call any of the insertSubview:...
methods of the parent view.

 ■ To reorder existing subviews inside their parent, call the bringSubviewToFront:,
sendSubviewToBack:, orexchangeSubviewAtIndex:withSubviewAtIndex:methods of the parent
view. Using these methods is faster than removing the subviews and reinserting them.

Creating and Managing the View Hierarchy 63
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

 ■ To remove a subview from its parent, call the removeFromSuperview method of the subview (not the
parent view).

When adding subviews, the current frame rectangle of the subview is used as the initial position of that view
inside its parent. You can change that position at any time by changing the frame property of the subview.
Subviews whose frame lies outside of their parent’s visible bounds are not clipped by default. To enable
clipping, you must set the clipsToBounds property of the parent view to YES.

Listing 2-1 shows a sample applicationDidFinishLaunching:method of an application delegate object.
In this example, the application delegate creates its entire user interface programmatically at launch time.
The interface consists of two generic UIView objects, which display primary colors. Each view is then
embedded inside a window, which is also a subclass of UIView and can therefore act as a parent view.
Because parents retain their subviews, this method releases the newly created views to prevent them from
being overretained.

Listing 2-1 Creating a window with views

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 // Create the window object and assign it to the
 // window instance variable of the application delegate.
 window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 window.backgroundColor = [UIColor whiteColor];

 // Create a simple red square
 CGRect redFrame = CGRectMake(10, 10, 100, 100);
 UIView *redView = [[UIView alloc] initWithFrame:redFrame];
 redView.backgroundColor = [UIColor redColor];

 // Create a simple blue square
 CGRect blueFrame = CGRectMake(10, 150, 100, 100);
 UIView *blueView = [[UIView alloc] initWithFrame:blueFrame];
 blueView.backgroundColor = [UIColor blueColor];

 // Add the square views to the window
 [window addSubview:redView];
 [window addSubview:blueView];

 // Once added to the window, release the views to avoid the
 // extra retain count on each of them.
 [redView release];
 [blueView release];

 // Show the window.
 [window makeKeyAndVisible];
}

64 Creating and Managing the View Hierarchy
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Important: When you’re considering memory management, think of the subviews as any other collection
object. Specifically, when you insert a view as a subview using addSubview:, that subview is retained by its
superview. Inversely, when you remove the subview from its superview using the removeFromSuperview
method, the subview is autoreleased. Releasing views after adding them to your view hierarchy prevents
them being overretained, which could cause memory leaks.

For more information about Cocoa memory management conventions, seeMemoryManagementProgramming
Guide for Cocoa.

When you add a subview to a parent view, UIKit sends several messages to both the parent and child to let
them know what is happening. You can override methods such as willMoveToSuperview:,
willMoveToWindow:, willRemoveSubview:, didAddSubview:, didMoveToSuperview, and
didMoveToWindow in your custom views to process changes before and after they occur and to update the
state information in your view accordingly.

After you create a view hierarchy, you can use the superview property of a view to get its parent or the
subviews property to get its children. You can also use the isDescendantOfView: method to determine
whether a view is in the view hierarchy of a parent view. Because the root view in a view hierarchy has no
parent, its superview property is set to nil. For views currently onscreen, the window object is typically
the root view of the hierarchy.

You can use the window property of a view to get a pointer to the window that currently contains the view
(if any). This property is set to nil if the view is not currently attached to a window.

Converting Coordinates in the View Hierarchy

At various times, particularly when handling events, an application may need to convert coordinate values
from one frame of reference to another. For example, touch events usually report the touch location using
the coordinate system of the window, but view objects need that information in the local coordinate system
of the view, which may be different. The UIView class defines the following methods for converting
coordinates to and from the view’s local coordinate system:

convertPoint:fromView:

convertRect:fromView:

convertPoint:toView:

convertRect:toView:

The convert...:fromView: methods convert coordinates to the view’s local coordinate system, while the
convert...:toView:methods convert coordinates from the view’s local coordinate system to the coordinate
system of the specified view. If you specify nil as the reference view for any of the methods, the conversions
are made to and from the coordinate system of the window that contains the view.

In addition to the UIView conversion methods, the UIWindow class also defines several conversion methods.
These methods are similar to the UIView versions except that instead of converting to and from a view’s
local coordinate system, these methods convert to and from the window’s coordinate system.

convertPoint:fromWindow:

convertRect:fromWindow:

convertPoint:toWindow:

convertRect:toWindow:

Creating and Managing the View Hierarchy 65
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Coordinate conversions are straightforward when neither view is rotated or when dealing only with points.
When converting rectangles or sizes between views with different rotations, the geometric structure must
be altered in a reasonable way so that the resulting coordinates are correct. When converting a rectangle,
the UIView class assumes that you want to guarantee coverage of the original screen area. To this end, the
converted rectangle is enlarged so that when located in the appropriate view, it completely covers the original
rectangle. Figure 2-11 shows the conversion of a rectangle in the rotatedView object's coordinate system
to that of its superview, outerView.

Figure 2-11 Converting values in a rotated view

Rectangle in
rotatedView
coordinate system

Rectangle converted to
outerView
coordinate system

outerView

superview
subviews
frame

rotatedView

superview
subviews
frame

When converting size information, UIView simply treats it as a delta offset from (0.0, 0.0) that you need to
convert from one view to another. Though the offset distance remains the same, the balance along the two
axes shifts according to the rotation. When converting sizes, UIKit always returns sizes that consist of positive
numbers.

Tagging Views

The UIView class contains a tag property that you can use to tag individual view objects with an integer
value. You can use tags to uniquely identify views inside your view hierarchy and to perform searches for
those views at runtime. (Tag-based searches are faster than iterating the view hierarchy yourself.) The default
value for the tag property is 0.

To search for a tagged view, use the viewWithTag: method of UIView. This method searches the receiver’s
subviews using a depth-first search, starting with the receiver itself.

Modifying Views at Runtime

As applications receive input from the user, they adjust their user interface in response to that input. An
application might rearrange the views in its interface, refresh existing views that contain changed data, or
load an entirely new set of views. When deciding which techniques to use, consider your interface and what
you are trying to achieve. How you initiate these techniques, however, is the same for all applications. The
following sections describe these techniques and how you use them to update your user interface at runtime.

66 Modifying Views at Runtime
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Note: For background information about how UIKit moves events and messages between itself and your
custom code, see “The View Interaction Model” (page 50) before proceeding.

Animating Views

Animations provide fluid visual transitions between different states of your user interface. In iPhone OS,
animations are used extensively to reposition views, change their size, and even change their alpha value to
make them fade in or out. Because this support is crucial for making easy-to-use applications, UIKit simplifies
the process of creating animations by integrating support for them directly into the UIView class.

The UIView class defines several properties that are inherently animatable—that is, the view provides built-in
support for animating changes in the property from their current value to a new value. Although the work
needed to perform the animation is handled for you automatically by the UIView class, you must still let the
view know that you want the animation to happen. You do this by wrapping changes to the given property
in an animation block.

An animation block starts with a call to the beginAnimations:context: class method of UIView and
ends with a call to the commitAnimations class method. Between these calls, you configure the animation
parameters and change the properties you want to animate. As soon as you call the commitAnimations
method, UIKit performs the animations, animating changes from their current values to the new values you
just set. Animation blocks can be nested, but nested animations do not start until the outermost animation
block is committed.

Table 2-2 lists the animatable properties of the UIView class.

Table 2-2 Animatable properties

DescriptionProperty

The view’s frame rectangle, in superview coordinates.frame

The view’s bounding rectangle, in view coordinates.bounds

The center of the frame, in superview coordinates.center

The transform applied to the view, relative to the center of its bounds.transform

The view’s alpha value, which determines the view’s level of transparency.alpha

Configuring Animation Parameters

In addition to changing property values inside an animation block, you can configure additional parameters
that determine how you want the animation to proceed. You do this by calling the following class methods
of UIView:

 ■ Use the setAnimationStartDate: method to set the start date of the animations after the
commitAnimations method returns. The default behavior is to schedule the animation for immediate
execution on the animation thread.

 ■ Use the setAnimationDelay: method to set a delay between the time the commitAnimations
method returns and the animations actually begin.

Modifying Views at Runtime 67
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

 ■ Use the setAnimationDuration: method to set the number of seconds over which the animations
occur.

 ■ Use the setAnimationCurve: method to set the relative speed of the animations over their course.
For example, the animations can gradually speed up at the beginning, gradually slow down near the
end, or remain the same speed throughout.

 ■ Use the setAnimationRepeatCount: method to set the number of times the animations repeat.

 ■ Use the setAnimationRepeatAutoreverses: method to specify whether the animations reverse
automatically when they reach their target value. Combined with the setAnimationRepeatCount:
method, you can use this method to toggle each property between its initial and final values smoothly
over a period of time.

The commitAnimations class method returns immediately and before the animations begin. UIKit performs
animations in a separate thread and away from your application’s main event loop. The commitAnimations
method posts its animations to this separate thread where they are queued up until they are ready to execute.
By default, Core Animation finishes the currently running animation block before starting animations currently
on the queue. You can override this behavior and start your animation immediately, however, by passing
YES to the setAnimationBeginsFromCurrentState: class method within your animation block. This
causes the current in-flight animation to stop and the new animation to begin from the current state.

By default, all animatable property changes within an animation block are animated. If you want to prevent
some changes made within the block from being animated, use the setAnimationsEnabled: method to
disable animations temporarily, make your changes, and then reenable them. Any changes made after a
setAnimationsEnabled: call with the value NO are not animated until a matching call with the value YES
occurs or you commit the animation block. Use the areAnimationsEnabledmethod to determine whether
animations are currently enabled.

Configuring an Animation Delegate

You can assign a delegate to an animation block and use that delegate to receive messages when the
animations begin and end. You might do this to perform additional tasks immediately before and after the
animation. You set the delegate using the setAnimationDelegate: class method of UIView, and use the
setAnimationWillStartSelector: and setAnimationDidStopSelector: methods to specify the
selectors that will receive the messages. The signatures of the corresponding methods are as follows:

- (void)animationWillStart:(NSString *)animationID context:(void *)context;
- (void)animationDidStop:(NSString *)animationID finished:(NSNumber *)finished
 context:(void *)context;

The animationID and context parameters for both methods are the same parameters that were passed
to the beginAnimations:context: method at the beginning of the animation block:

 ■ animationID - an application-supplied string used to identify animations in an animation block.

 ■ context - another application-supplied object you can use to pass additional information to the delegate.

The setAnimationDidStopSelector: selector method has an additional argument—a Boolean value
that is YES if the animation ran to completion and was not canceled or stopped prematurely by another
animation.

68 Modifying Views at Runtime
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Responding to Layout Changes

Whenever the layout of your views changes, UIKit applies each view’s autoresizing behaviors and then calls
its layoutSubviews method to give it a chance to adjust the geometry of its contained subviews further.
Layout changes can occur when any of the following happens:

 ■ The size of a view’s bounds rectangle changes.

 ■ The content offset value—that is, the origin of the visible content region—of a scroll view changes.

 ■ The transform associated with the view changes.

 ■ The set of Core Animation sublayers associated with the view’s layer changes.

 ■ Your application forces layout to occur by calling the setNeedsLayout or layoutIfNeeded methods
of the view.

 ■ Your application forces layout by calling the setNeedsLayout method of the view’s underlying layer
object.

A view’s autoresizing behaviors handle the initial job of positioning any subviews. Applying these behaviors
guarantees that your views are close to their intended size. For information about how autoresizing behaviors
affect the size and position of your views, see “Autoresizing Behaviors” (page 60).

Sometimes, you might want to adjust the layout of subviews manually using layoutSubviews, rather than
rely exclusively on autoresizing behaviors. For example, if you are implementing a custom control that is
built from several subview elements, by adjusting the subviews manually you can precisely configure the
appearance for your control over a range of sizes. Alternatively, a view representing a large scrollable content
area could display that content by tiling a set of subviews. During scrolling, views going off one edge of the
screen would be recycled and repositioned at the incoming screen edge along with any new content.

Note: You can also use the layoutSubviews method to adjust the size and position of custom CALayer
objects attached as sublayers to your view’s layer. Managing custom layer hierarchies behind your view lets
you perform advanced animations directly using Core Animation. For more information about using Core
Animation to manage layer hierarchies, see Core Animation Programming Guide.

When writing your layout code, be sure to test your code in each of your application’s supported interface
orientations. Applications that support both landscape and portrait orientations should verify that layout is
handled properly in each orientation. Similarly, your application should be prepared to deal with other system
changes, such as the height of the status bar changing. This occurs when a user uses your application while
on an active phone call and then hangs up. At hang-up time, the managing view controller may resize its
view to account for the shrinking status bar size. Such a change would then filter down to the rest of the
views in your application.

Redrawing Your View’s Content

Occasionally, changes to your application’s data model require that you also change the corresponding user
interface. To make those changes, you mark the corresponding views as dirty and in need of an update (using
either the setNeedsDisplay or setNeedsDisplayInRect:methods). Marking views as dirty, as opposed
to simply creating a graphics context and drawing, gives the system a chance to process drawing operations
more efficiently. For example, if you mark several regions of the same view as dirty during a given cycle, the

Modifying Views at Runtime 69
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

system coalesces the dirty regions into a single call to the view’s drawRect: method. As a result, only one
graphics context is created to draw all of the affected regions. This practice is much more efficient than
creating several graphics contexts in quick succession.

Views that implement a drawRect: method should always check the rectangle passed to the method and
use it to limit the scope of their drawing operations. Because drawing is a relatively expensive operation,
limiting drawing in this way is a good way to improve performance.

By default, geometry changes to a view do not automatically cause the view to be redrawn. Instead, most
geometry changes are handled automatically by Core Animation. Specifically, when you change the frame,
bounds, center, or transform properties of the view, Core Animation applies the geometry changes to
the cached bitmap associated with the view’s layer. In many cases, this approach is perfectly acceptable, but
if you find the results undesirable, you can force UIKit to redraw your view instead. To prevent Core Animation
from applying geometry changes implicitly, set your view’s contentMode property to
UIViewContentModeRedraw. For more information about content modes, see “Content Modes and
Scaling” (page 58).

Hiding Views

You can hide or show a view by changing the value in the view’s hidden property. Setting this property to
YES hides the view; setting it to NO shows it. Hiding a view also hides any embedded subviews as if their
own their hidden property were set.

When you hide a view, it remains in the view hierarchy, but its contents are not drawn and it does not receive
touch events. Because it remains in the view hierarchy, a hidden view continues to participate in autoresizing
and other layout operations. If you hide a view that is currently the first responder, the view does not
automatically resign its first responder status. Events targeted at the first responder are still delivered to the
hidden view. For more information about the responder chain, see “Responder Objects and the Responder
Chain” (page 77).

Creating a Custom View

The UIView class provides the underlying support for displaying content on the screen and for handling
touch events, but its instances draw nothing but a background color using an alpha value and its subviews.
If your application needs to display custom content or handle touch events in a specific manner, you must
create a custom subclass of UIView.

The following sections describe some of the key methods and behaviors you might implement in your custom
view objects. For additional subclassing information, see UIView Class Reference.

Initializing Your Custom View

Every new view object you define should include a custom initWithFrame: method. This method is
responsible for initializing the class at creation time and putting your view object into a known state. You
use this method when creating instances of your view programmatically in your code.

70 Creating a Custom View
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Listing 2-2 shows a skeletal implementation of a standard initWithFrame: method. This method calls the
inherited implementation of the method first and then initializes the instance variables and state information
of the class before returning the initialized object. Calling the inherited implementation is traditionally
performed first so that if there is a problem, you can simply abort your own initialization code and return
nil.

Listing 2-2 Initializing a view subclass

- (id)initWithFrame:(CGRect)aRect {
 self = [super initWithFrame:aRect];
 if (self) {
 // setup the initial properties of the view
 ...
 }
 return self;
}

If you plan to load instances of your custom view class from a nib file, you should be aware that in iPhone
OS, the nib-loading code does not use the initWithFrame:method to instantiate new view objects. Instead,
it uses the initWithCoder: method that is defined as part of the NSCoding protocol.

Even if your view adopts the NSCoding protocol, Interface Builder does not know about your view’s custom
properties and therefore does not encode those properties into the nib file. As a result, your own
initWithCoder: method does not have the information it needs to properly initialize the class when it is
loaded from a nib file. To solve this problem, you can implement the awakeFromNib method in your class
and use it to initialize your class specifically when it is loaded from a nib file.

Drawing Your View’s Content

As you make changes to your view’s content, you notify the system that parts of that view need to be redrawn
using the setNeedsDisplay or setNeedsDisplayInRect: methods. When the application returns to its
run loop, it coalesces any drawing requests and computes the specific parts of your interface that need to
be updated. It then begins traversing your view hierarchy and sending drawRect: messages to the views
that require updates. The traversal starts with the root view of your hierarchy and proceeds down through
the subviews, processing them from back to front. Views that display custom content inside their visible
bounds must implement the drawRect: method to render that content.

Before calling your view’s drawRect: method, UIKit configures the drawing environment for your view. It
creates a graphics context and adjusts its coordinate system and clipping region to match the coordinate
system and bounds of your view. Thus, by the time your drawRect: method is called, you can simply begin
drawing using UIKit classes and functions, Quartz functions, or a combination of them all. If you need to
access the current graphics context, you can get a pointer to it using the UIGraphicsGetCurrentContext
function.

Important: The current graphics context is valid only for the duration of one call to your view’s drawRect:
method. UIKit may create a different graphics context for each subsequent call to this method, so you should
not try to cache the object and use it later.

Listing 2-3 shows a simple implementation of a drawRect: method that draws a 10-pixel-wide red border
around the view. Because UIKit drawing operations use Quartz for their underlying implementations, you
can mix drawing calls as shown here and still get the results you expect.

Creating a Custom View 71
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Listing 2-3 A drawing method

- (void)drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGRect myFrame = self.bounds;

 CGContextSetLineWidth(context, 10);

 [[UIColor redColor] set];
 UIRectFrame(myFrame);
}

If you know that your view’s drawing code always covers the entire surface of the view with opaque content,
you can improve the overall efficiency of your drawing code by setting the opaque property of your view to
YES. When you mark a view as opaque, UIKit avoids drawing content that is located immediately behind
your view. This not only reduces the amount of time spent drawing but also minimizes the work that must
be done to composite that content together. You should set this property to YES only if you know your view
provides opaque content. If your view cannot guarantee that its contents are always opaque, you should set
the property to NO.

Another way to improve drawing performance, especially during scrolling, is to set the
clearsContextBeforeDrawing property of your view to NO. When this property is set to YES, UIKIt
automatically fills the area to be updated by your drawRect: method with transparent black before calling
your method. Setting this property to NO eliminates the overhead for that fill operation but puts the burden
on your application to completely redraw the portions of your view inside the update rectangle passed to
your drawRect: method. Such an optimization is usually a good tradeoff during scrolling, however.

Responding to Events

The UIView class is a subclass of UIResponder and is therefore capable of receiving touch events
corresponding to user interactions with the view’s contents. Touch events start at the view in which the
touch occurred and are passed up the responder chain until they are handled. Because views are themselves
responders, they participate in the responder chain and therefore can receive touch events dispatched to
them from any of their associated subviews.

Views that handle touch events typically implement all of the following methods, which are described in
more detail in “Event Handling” (page 75).

touchesBegan:withEvent:

touchesMoved:withEvent:

touchesEnded:withEvent:

touchesCancelled:withEvent:

Remember that, by default, views respond to only one touch at a time. If the user puts a second finger down,
the system ignores the touch event and does not report it to your view. If you plan to track multifinger
gestures from your view’s event-handler methods, you need to reenable multi-touch events by setting the
multipleTouchEnabled property of your view to YES.

Some views, such as labels and images, disable event handling altogether initially. You can control whether
a view handles events at all by changing the value of the view’s userInteractionEnabled property. You
might temporarily set this property to NO to prevent the user from manipulating the contents of your view
while a long operation is pending. To prevent events from reaching any of your views, you can also use the

72 Creating a Custom View
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

beginIgnoringInteractionEvents and endIgnoringInteractionEvents methods of the
UIApplication object. These methods affect the delivery of events for the entire application, not just for
a single view.

As it handles touch events, UIKit uses the hitTest:withEvent: and pointInside:withEvent:methods
of UIView to determine whether a touch event occurred in a given view. Although you rarely need to override
these methods, you could do so to implement custom touch behaviors for your view. For example, you could
override these methods to prevent subviews from handling touch events.

Cleaning Up After Your View

If your view class allocates any memory, stores references to any custom objects, or holds resources that
must be released when the view is released, you must implement a dealloc method. The system calls the
dealloc method when your view’s retain count reaches zero and your view is about to be deallocated itself.
Your implementation of this method should release the objects and resources it holds and then call the
inherited implementation, as shown in Listing 2-4.

Listing 2-4 Implementing the dealloc method

- (void)dealloc {
 // Release a retained UIColor object
 [color release];

 // Call the inherited implementation
 [super dealloc];
}

Creating a Custom View 73
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

74 Creating a Custom View
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Window and Views

Events in iPhone OS are based on a Multi-Touch model. Instead of using a mouse and a keyboard, users touch
the screen of the device to manipulate objects, enter data, and otherwise convey their intentions. iPhone
OS recognizes one or more fingers touching the screen as part of a Multi-Touch sequence. This sequence
begins when the first finger touches down on the screen and ends when the last finger is lifted from the
screen. iPhone OS tracks fingers touching the screen throughout a multi-touch sequence and records the
characteristics of each of them, including the location of the finger on the screen and the time the touch
occurred. Applications often recognize certain combinations of touches as gestures and respond to them in
ways that are intuitive to users, such as zooming in on content in response to a pinching gesture and scrolling
through content in response to a flicking gesture.

Note: A finger on the screen affords a much different level of precision than a mouse pointer. When a user
touches the screen, the area of contact is actually elliptical and tends to be offset below the point where the
user thinks he or she touched. This “contact patch” also varies in size and shape based on which finger is
touching the screen, the size of the finger, the pressure of the finger on the screen, the orientation of the
finger, and other factors. The underlying Multi-Touch system analyzes all of this information for you and
computes a single touch point.

Many classes in UIKit handle multi-touch events in ways that are distinctive to objects of the class. This is
especially true of subclasses of UIControl, such as UIButton and UISlider. Objects of these
subclasses—known as control objects—are receptive to certain types of gestures, such as a tap or a drag in
a certain direction; when properly configured, they send an action message to a target object when that
gesture occurs. Other UIKit classes handle gestures in other contexts; for example, UIScrollView provides
scrolling behavior for table views, text views, and other views with large content areas.

Some applications may not need to handle events directly; instead, they can rely on the classes of UIKit for
that behavior. However, if you create a custom subclass of UIView—a common pattern in iPhone OS
development—and if you want that view to respond to certain touch events, you need to implement the
code required to handle those events. Moreover, if you want a UIKit object to respond to events differently,
you have to create a subclass of that framework class and override the appropriate event-handling methods.

Events and Touches

In iPhone OS, a touch is the presence or movement of a finger on the screen that is part of a unique
multi-touch sequence. For example, a pinch-close gesture has two touches: two fingers on the screen moving
toward each other from opposite directions. There are simple single-finger gestures, such as a tap, or a
double-tap, or a flick (where the user quickly swipes a finger across the screen). An application might recognize
even more complicated gestures; for example, an application might have a custom control in the shape of
a dial that users “turn” with multiple fingers to fine-tune some variable.

An event is an object that the system continually sends to an application as fingers touch the screen and
move across its surface. The event provides a snapshot of all touches during a multi-touch sequence, most
importantly the touches that are new or have changed for a particular view. A multi-touch sequence begins

Events and Touches 75
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

when a finger first touches the screen. Other fingers may subsequently touch the screen, and all fingers may
move across the screen. The sequence ends when the last of these fingers is lifted from the screen. An
application receives event objects during each phase of any touch.

Touches have both temporal and spatial aspects. The temporal aspect, called a phase, indicates when a touch
has just begun, whether it is moving or stationary, and when it ends—that is, when the finger is lifted from
the screen (see Figure 3-1). A touch also has the current location in a view or window and the previous
location (if any). When a finger touches the screen, the touch is associated with a window and a view and
maintains that association throughout the life of the event. If multiple touches arrive at once, they are treated
together only if they are associated with the same view. Likewise, if two touches arrive in quick succession,
they are treated as a multiple tap only if they are associated with the same view.

Figure 3-1 A multi-touch sequence and touch phases

UITouchPhaseEndedUITouchPhaseBegan

Touch 1
down

UITouchPhaseBegan

Touch 2
down

UITouchPhaseMoved

Touch 1 and 2
moved

Touch 1 and 2
up

In iPhone OS, a UITouch object represents a touch, and a UIEvent object represents an event. An event
object contains all touch objects for the current multi-touch sequence and can provide touch objects specific
to a view or window (see Figure 3-2). A touch object is persistent for a given finger during a sequence, and
UIKit mutates it as it tracks the finger throughout it. The touch attributes that change are the phase of the
touch, its location in a view, its previous location, and its timestamp. Event-handling code evaluates these
attributes to determine how to respond to the event.

Figure 3-2 Relationship of a UIEvent object and its UITouch objects

UIEvent

UITouch

phase = UITouchPhaseBegan
locationInView = (35,50)

view = ViewA

phase = UITouchPhaseMoved
locationInView = (35,20)

view = ViewA

UITouch

phase = UITouchPhaseEnded
locationInView = (120,87)

view = ViewB

UITouch

The system can cancel a multi-touch sequence at any time and an event-handling application must be
prepared to respond appropriately. Cancellations can occur as a result of overriding system events, such as
an incoming phone call.

76 Events and Touches
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

Event Delivery

The delivery of an event to an object for handling occurs along a specific path. As described in “Core
Application Architecture” (page 15), when users touch the screen of a device, iPhone OS recognizes the set
of touches and packages them in a UIEvent object that it places in the current application’s event queue.
The event object encapsulates the touches for a given moment of a multi-touch sequence. The singleton
UIApplication object that is managing the application takes an event from the top of the queue and
dispatches it for handling. Typically, it sends the event to the application’s key window—the window currently
the focus for user events—and the UIWindow object representing that window sends the event to the first
responder for handling. (The first responder is described in “Responder Objects and the Responder Chain.”)

An application uses hit-testing to find the first responder for an event; it recursively calls hitTest:withEvent:
on the views in the view hierarchy (going down the hierarchy) to determine the subview in which the touch
took place. The touch is associated with that view for its lifetime, even if it subsequently moves outside the
view. “Event-Handling Techniques” (page 83) discusses some of the programmatic implications of hit-testing.

The UIApplication object and each UIWindow object dispatches events in the sendEvent:method. (Both
classes declare an identically named method). Because these methods are funnel points for events coming
into an application, you can subclass UIApplication or UIWindow and override the sendEvent: method
to monitor events or perform special event handling. However, most applications have no need to do this.

Responder Objects and the Responder Chain

A responder object is an object that can respond to events and handle them. UIResponder is the base class
for all responder objects. It defines the programmatic interface not only for event handling but for common
responder behavior. UIApplication, UIView, and all UIKit classes that descend from UIView (including
UIWindow) inherit directly or indirectly from UIResponder.

The first responder is the responder object in the application (usually a UIView object) that is the current
recipient of touches. A UIWindow objects sends the first responder an event in a message, giving it the first
shot at handling the event. If the first responder doesn’t handle the event, it passes the event (via message)
to the next responder in the responder chain to see if it can handle it.

The responder chain is a linked series of responder objects. It allows responder objects to delegate
responsibility for handling an event to other, higher-level objects. An event proceeds up the responder chain
as the application looks for an object capable of handling the event. The responder chain consists of a series
of “next responders” in the following sequence:

1. The first responder passes the event to its view controller (if it has one) and then on to its superview.

2. Each subsequent view in the hierarchy similarly passes to its view controller first (if it has one) and then
to its superview.

3. The topmost enclosing view passes the event to the UIWindow object.

4. The UIWindow object passes the event to the singleton UIApplication object.

If the application finds no responder object to handle the event, it discards the event.

Event Delivery 77
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

Any responder object in the responder chain may implement a UIResponder event-handling method and
thus receive an event message. But a responder may decline to handle a particular event or may handle it
only partially. In that case, it can forward the event message to the next responder in a message similar to
the following one:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch* touch = [touches anyObject];
 NSUInteger numTaps = [touch tapCount];
 if (numTaps < 2) {
 [self.nextResponder touchesBegan:touches withEvent:event];
 } else {
 [self handleDoubleTap:touch];
 }
}

Note: If a responder object forwards event-handling messages to the next responder for the initial phase
of multi-touch sequence (in touchesBegan:withEvent:), it should forward all other event-handling
messages for that sequence.

Action messages also make use of the responder chain. When users manipulate a UIControl object such
as button or page control, the control object (if properly configured) sends an action message to a target
object. But if nil is specified as the target, the application initially routes the message as it does an event
message: to the first responder. If the first responder doesn’t handle the action message, it sends it to its
next responder, and so on up the responder chain.

Regulating Event Delivery

UIKit gives applications programmatic means to simplify event handling or to turn off the stream of events
completely. The following list summarizes these approaches:

 ■ Turning off delivery of events. By default, a view receives touch events, but you can set its
userInteractionEnabled property to NO to turn off delivery of events. A view also does not receive
events if it’s hidden or if it’s transparent.

 ■ Turning off delivery of events for a period. An application can call the UIApplication method
beginIgnoringInteractionEvents and later call the endIgnoringInteractionEvents method.
The first method stops the application from receiving touch event messages entirely; the second method
is called to resume the receipt of such messages. You sometimes want to turn off event delivery when
your code is performing animations.

 ■ Turning on delivery of multiple touches. By default, a view ignores all but the first touch during a
multi-touch sequence. If you want the view to handle multiple touches you must enable multiple touches
for the view. This can be done programmatically by setting the multipleTouchEnabled property of
your view to YES, or in Interface Builder using the inspector for the related view.

 ■ Restricting event delivery to a single view. By default, a view’s exclusiveTouch property is set to NO.
If you set the property to YES, you mark the view so that, if it is tracking touches, it is the only view in
the window that is tracking touches. Other views in the window cannot receive those touches. However,
a view that is marked “exclusive touch” does not receive touches that are associated with other views
in the same window. If a finger contacts an exclusive-touch view, then that touch is delivered only if that
view is the only view tracking a finger in that window. If a finger touches a non-exclusive view, then that
touch is delivered only if there is not another finger tracking in an exclusive-touch view.

78 Event Delivery
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

 ■ Restricting event delivery to subviews. A custom UIView class can override hitTest:withEvent:
to restrict the delivery of multi-touch events to its subviews. See “Event-Handling Techniques” (page
83) for a discussion of this technique.

Handling Multi-Touch Events

To handle multi-touch events, your custom UIView subclass (or, less frequently, your custom UIApplication
or UIWindow subclass), must implement at least one of the UIResponder methods for event handling. The
following sections describe these methods, discuss approaches for handling common gestures, show an
example of a responder object that handles a complex sequence of multi-touch events, and suggest some
techniques for event handling.

The Event-Handling Methods

During a multi-touch sequence, the application dispatches a series of event messages. To receive and handle
these messages, the class of a responder object must implement at least one of the following methods
declared by UIResponder:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

The application sends these messages when there are new or changed touches for a given touch phase:

 ■ It sends the touchesBegan:withEvent:message when one or more fingers touch down on the screen.

 ■ It sends the touchesMoved:withEvent: message when one or more fingers move.

 ■ It sends the touchesEnded:withEvent: message when one or more fingers lift up from the screen.

 ■ It sends the touchesCancelled:withEvent: message when the touch sequence is cancelled by a
system event, such as an incoming phone call.

Each of these methods is associated with a touch phase (for example, UITouchPhaseBegan), which for any
UITouch object you can find out by evaluating its phase property.

Each message that invokes an event-handling method passes in two parameters. The first is a set of UITouch
objects that represent new or changed touches for the given phase. The second parameter is a UIEvent
object representing this particular event. From the event object you can get all touch objects for the event
(allTouches) or a subset of those touch objects filtered for specific views or windows. Some of these touch
objects represent touches that have not changed since the previous event message or that have changed
but are in different phases.

A responder object frequently handles an event for a given phase by getting one or more of the UITouch
objects in the passed-in set and then evaluating their properties or getting their locations. (If any of the touch
objects will do, it can send the NSSet object an anyObject message.) One important method is
locationInView:, which, if passed a parameter of self, yields the location of the touch in the responder
object’s coordinate system (assuming the responder is a UIView object and the view passed as a parameter

Handling Multi-Touch Events 79
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

is not nil). A parallel method tells you the previous location of the touch (previousLocationInView:).
Properties of the UITouch instance tell you how many taps have been made (tapCount), when the touch
was created or last mutated (timestamp), and what phase it is in (phase).

A responder class does not have to implement all three of the event methods listed above. For example, if
it is looking for only fingers when they’re lifted from the screen, it need only implement
touchesEnded:withEvent:.

If a responder creates persistent objects while handling events during a multi-touch sequence, it should
implement touchesCancelled:withEvent: to dispose of those objects when the system cancels the
sequence. Cancellation often occurs when an external event—for example, an incoming phone call—disrupts
the current application’s event processing. Note that a responder object should also dispose of those same
objects when it receives the last touchesEnded:withEvent: message for a multi-touch sequence. (See
“Event-Handling Techniques” (page 83) to find out how to determine the last touch-up in a sequence.)

Handling Single and Multiple Tap Gestures

A very common gesture in iPhone applications is the tap: the user taps an object with his or her finger. A
responder object can respond to a single tap in one way, a double-tap in another, and possibly a triple-tap
in yet another way. To determine the number of times the user tapped a responder object, you get the value
of the tapCount property of a UITouch object.

The best places to find this value are the methods touchesBegan:withEvent: and
touchesEnded:withEvent:. In many cases, the latter method is preferred because it corresponds to the
touch phase in which the user lifts a finger from a tap. By looking for the tap count in the touch-up phase
(UITouchPhaseEnded), you ensure that the finger is really tapping and not, for instance, touching down
and then dragging.

Listing 3-1 shows the way to determine whether a double-tap occurred in one of your views.

Listing 3-1 Detecting a double-tap gesture

- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event
{
 UITouch *touch = [touches anyObject];

 if([touch tapCount] == 2) {
 // Process a double-tap gesture
 }
}

A complication arises when a responder object wants to handle a single-tap and a double-tap gesture in
different ways. For example, a single tap might select the object and a double tap might display a view for
editing the item that was double-tapped. How is the responder object to know that a single tap is not the
first part of a double tap? Here is how a responder object could handle this situation using the event-handling
methods just described:

1. In touchesEnded:withEvent:, when the tap count is one, the responder object sends itself a
performSelector:withObject:afterDelay: message. The selector identifies another method
implemented by the responder to handle the single-tap gesture; the object for the second parameter
is the related UITouch object; the delay is some reasonable interval between a single- and a double-tap
gesture.

80 Handling Multi-Touch Events
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

2. In touchesBegan:withEvent:, if the tap count is two, the responder object cancels the pending
delayed-perform invocation by sending itself a cancelPreviousPerformRequestsWithTarget:
message. If the tap count is not two, the method identified by the selector in the previous step for
single-tap gestures is invoked after the delay.

3. In touchesEnded:withEvent:, if the tap count is two, the responder performs the actions necessary
for handling double-tap gestures.

Detecting Swipe Gestures

Horizontal and vertical swipes are a simple type of gesture that you can track easily from your own code and
use to perform actions. To detect a swipe gesture, you have to track the movement of the user’s finger along
the desired axis of motion, but it is up to you to determine what constitutes a swipe. In other words, you
need to determine whether the user’s finger moved far enough, if it moved in a straight enough line, and if
it went fast enough. You do that by storing the initial touch location and comparing it to the location reported
by subsequent touch-moved events.

Listing 3-2 shows some basic tracking methods you could use to detect horizontal swipes in a view. In this
example, the view stores the initial location of the touch in a startTouchPosition member variable. As
the user’s finger moves, the code compares the current touch location to the starting location to determine
whether it is a swipe. If the touch moves too far vertically, it is not considered to be a swipe and is processed
differently. If it continues along its horizontal trajectory, however, the code continues processing the event
as if it were a swipe. The processing routines could then trigger an action once the swipe had progressed
far enough horizontally to be considered a complete gesture. To detect swipe gestures in the vertical direction,
you would use similar code but would swap the x and y components.

Listing 3-2 Tracking a swipe gesture in a view

#define HORIZ_SWIPE_DRAG_MIN 12
#define VERT_SWIPE_DRAG_MAX 4

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 startTouchPosition = [touch locationInView:self];
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 CGPoint currentTouchPosition = [touch locationInView:self];

 // If the swipe tracks correctly.
 if (fabsf(startTouchPosition.x - currentTouchPosition.x) >=
HORIZ_SWIPE_DRAG_MIN &&
 fabsf(startTouchPosition.y - currentTouchPosition.y) <=
VERT_SWIPE_DRAG_MAX)
 {
 // It appears to be a swipe.
 if (startTouchPosition.x < currentTouchPosition.x)
 [self myProcessRightSwipe:touches withEvent:event];
 else
 [self myProcessLeftSwipe:touches withEvent:event];

Handling Multi-Touch Events 81
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

 }
 else
 {
 // Process a non-swipe event.
 }
}

Handling a Complex Multi-Touch Sequence

Taps and swipes are simple gestures. Handling a multi-touch sequence that is more complicated—in effect,
interpreting an application-specific gesture—depends on what the application is trying to accomplish. You
may have to track all touches through all phases, recording the touch attributes that have changed and
altering internal state appropriately.

The best way to convey how you might handle a complex multi-touch sequence is through an example.
Listing 3-3 shows how a custom UIView object responds to touches by animating the movement of a
“Welcome” placard around the screen as a finger moves it and changing the language of the welcome when
the user makes a double-tap gesture. (The code in this example comes from theMoveMe sample code project,
which you can examine to get a better understanding of the event-handling context.)

Listing 3-3 Handling a complex multi-touch sequence

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [[event allTouches] anyObject];
 // Only move the placard view if the touch was in the placard view
 if ([touch view] != placardView) {
 // On double tap outside placard view, update placard's display string
 if ([touch tapCount] == 2) {
 [placardView setupNextDisplayString];
 }
 return;
 }
 // "Pulse" the placard view by scaling up then down
 // Use UIView's built-in animation
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.5];
 CGAffineTransform transform = CGAffineTransformMakeScale(1.2, 1.2);
 placardView.transform = transform;
 [UIView commitAnimations];

 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.5];
 transform = CGAffineTransformMakeScale(1.1, 1.1);
 placardView.transform = transform;
 [UIView commitAnimations];

 // Move the placardView to under the touch
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:0.25];
 placardView.center = [self convertPoint:[touch locationInView:self]
fromView:placardView];
 [UIView commitAnimations];
}

82 Handling Multi-Touch Events
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [[event allTouches] anyObject];

 // If the touch was in the placardView, move the placardView to its location
 if ([touch view] == placardView) {
 CGPoint location = [touch locationInView:self];
 location = [self convertPoint:location fromView:placardView];
 placardView.center = location;
 return;
 }
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [[event allTouches] anyObject];

 // If the touch was in the placardView, bounce it back to the center
 if ([touch view] == placardView) {
 // Disable user interaction so subsequent touches don't interfere with
 animation
 self.userInteractionEnabled = NO;
 [self animatePlacardViewToCenter];
 return;
 }
}

Note: Custom views that redraw themselves in response to events they handle generally should only set
drawing state in the event-handling methods and perform all of the drawing in the drawRect: method. To
learn more about drawing view content, see “Graphics and Drawing” (page 85).

Event-Handling Techniques

Here are some event-handling techniques you can use in your code.

 ■ Tracking the mutations of UITouch objects

In your event-handling code you can store relevant bits of touch state for later comparison with the
mutated UITouch instance. As an example, say you want to compare the final location of each touch
with its original location. In the touchesBegan:withEvent: method, you can obtain the original
location of each touch from the locationInView: method and store those in a CFDictionary object
using the addresses of the UITouch objects as keys. Then, in the touchesEnded:withEvent: method
you can use the address of each passed-in UITouch object to obtain the object’s original location and
compare that with its current location. (You should use a CFDictionary object rather than an
NSDictionary object; the latter copies its keys, but the UITouch class does not adopt the NSCopying
protocol, which is required for object copying.)

 ■ Hit-testing for a touch on a subview or layer

A custom view can use the hitTest:withEvent: method of UIView or the hitTest: method of
CALayer to find the subview or layer that is receiving a touch, and handle the event appropriately. The
following example detects when an “Info” image in a layer of the custom view is tapped.

- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
 CGPoint location = [[touches anyObject] locationInView:self];

Handling Multi-Touch Events 83
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

 CALayer *hitLayer = [[self layer] hitTest:[self convertPoint:location
fromView:nil]];

 if (hitLayer == infoImage) {
 [self displayInfo];
 }
}

If you have a custom view with subviews, you need to determine whether you want to handle touches
at the subview level or the superview level. If the subviews do not handle touches by implementing
touchesBegan:withEvent:, touchesEnded:withEvent:, or touchesMoved:withEvent:, then
these messages propagate up the responder chain to the superview. However, because multiple taps
and multiple touches are associated with the subviews where they first occurred, the superview won’t
receive these touches. To ensure reception of all kinds of touches, the superview should override
hitTest:withEvent: to return itself rather than any of its subviews.

 ■ Determining when the last finger in a multi-touch sequence has lifted

When you want to know when the last finger in a multi-touch sequence is lifted from a view, compare
the number of UITouch objects in the passed in set with the number of touches for the view maintained
by the passed-in UIEvent object. For example:

- (void)touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event {
 if ([touches count] == [[event touchesForView:self] count]) {
 // last finger has lifted....
 }
}

84 Handling Multi-Touch Events
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling

High-quality graphics are an important part of your application’s user interface. Providing high-quality graphics
not only makes your application look good, but it also makes your application look like a natural extension
to the rest of the system. iPhone OS provides two primary paths for creating high-quality graphics in your
system: OpenGL or native rendering using Quartz, Core Animation, and UIKit.

The OpenGL frameworks are geared primarily toward game development or applications that require high
frame rates. OpenGL is a C-based interface used to create 2D and 3D content on desktop computers. iPhone
OS supports OpenGL drawing through the OpenGL ES framework, which is based on the OpenGL ES v1.1
specification and is designed specifically for use on embedded hardware systems. This version differs in many
ways from desktop versions of OpenGL, so you should be sure to follow the advice for using it later in this
chapter.

For developers who want a more object-oriented drawing approach, iPhone OS provides Quartz, Core
Animation, and the graphics support in UIKit. Quartz is the main drawing interface, providing support for
path-based drawing, anti-aliased rendering, gradient fill patterns, images, colors, coordinate-space
transformations, and PDF document creation, display, and parsing. UIKit provides Objective-C wrappers for
Quartz images and color manipulations. Core Animation provides the underlying support for animating
changes in many UIKit view properties and can also be used to implement custom animations.

This chapter provides an overview of the drawing process for iPhone applications, along with specific drawing
techniques for each of the supported drawing technologies. This chapter also provides tips and guidance
on how to optimize your drawing code for the iPhone OS platform.

The UIKit Graphics System

In iPhone OS, all drawing—regardless of whether it involves OpenGL, Quartz, UIKit, or Core Animation—occurs
within the confines of a UIView object. Views define the portion of the screen in which drawing occurs. If
you use system-provided views, this drawing is handled for you automatically. If you define custom views,
however, you must provide the drawing code yourself. For applications that draw using OpenGL, once you
set up your rendering surface, you use the drawing model specified by OpenGL.

For Quartz, Core Animation, and UIKit, you use the drawing concepts described in the following sections.

The View Drawing Cycle

The basic drawing model for UIView objects involves updating content on demand. The UIView class makes
the update process easier and more efficient, however, by gathering the update requests you make and
delivering them to your drawing code at the most appropriate time.

Whenever a portion of your view needs to be redrawn, the UIView object’s built-in drawing code calls its
drawRect: method. It passes this method a rectangle indicating the portion of your view that needs to be
redrawn. You override this method in your custom view subclasses and use it to draw the contents of your

The UIKit Graphics System 85
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

view. The first time your view is drawn, the rectangle passed to the drawRect: method contains your view’s
entire visible area. During subsequent calls, however, this rectangle represents only the portion of the view
that actually needs to be redrawn. There are several actions that can trigger a view update:

 ■ Moving or removing another view that was partially obscuring your view

 ■ Making a previously hidden view visible again by setting its hidden property to NO

 ■ Scrolling a view off the screen and then back on

 ■ Explicitly calling the setNeedsDisplay or setNeedsDisplayInRect: method of your view

After calling your drawRect: method, the view marks itself as updated and waits for new actions to arrive
and trigger another update cycle. If your view displays static content, then all you need to do is respond to
changes in your view’s visibility caused by scrolling and the presence of other views. If you update your view’s
content periodically, however, you must determine when to call the setNeedsDisplay or
setNeedsDisplayInRect:method to trigger an update. For example, if you were updating content several
times a second, you might want to set up a timer to update your view. You might also update your view in
response to user interactions or the creation of new content in your view.

Coordinates and Coordinate Transforms

As described in “View Coordinate Systems” (page 55), the origin of a window or view is located in its top-left
corner, and positive coordinate values extend down and to the right of this origin. When you write your
drawing code, you use this coordinate system to specify the location of individual points for the content you
draw.

If you need to make make changes to the default coordinate system, you do so by modifying the current
transformation matrix. The current transformation matrix (CTM) is a mathematical matrix that maps points
in your view’s coordinate system to points on the device’s screen. When your view’s drawRect: method is
first called, the CTM is configured so that the origin of the coordinate system matches the your view’s origin
and its positive axes extend down and to the right. However, you can change the CTM by adding scaling,
rotation, and translation factors to it and thereby change the size, orientation, and position of the default
coordinate system relative to the underlying view or window.

Modifying the CTM is the standard technique used to draw content in your view because it involves much
less work. If you want to draw a 10 x 10 square starting at the point (20, 20) in the current drawing system,
you could create a path that moves to (20, 20) and then draws the needed set of lines to complete the square.
If you decide later that you want to move that square to the point (10, 10), however, you would have to
recreate the path with the new starting point. In fact, you would have to recreate the path every time you
changed the origin. Creating paths is a relatively expensive operation, but creating a square whose origin is
at (0, 0) and modifying the CTM to match the desired drawing origin is cheap by comparison.

In the Core Graphics framework, there are two ways to modify the CTM. You can modify the CTM directly
using the CTM manipulation functions defined in CGContext Reference. You can also create a
CGAffineTransform structure, apply any transformations you want, and then concatenate that transform
onto the CTM. Using an affine transform lets you group transformations and then apply them to the CTM all
at once. You can also evaluate and invert affine transforms and use them to modify point, size, and rectangle
values in your code. For more information on using affine transforms, see Quartz 2D Programming Guide and
CGAffineTransform Reference.

86 The UIKit Graphics System
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

Graphics Contexts

Before calling your custom drawRect: method, the view object automatically configures its drawing
environment so that your code can start drawing immediately. As part of this configuration, the UIView
object creates a graphics context (a CGContextRef opaque type) for the current drawing environment. This
graphics context contains the information the drawing system needs to perform any subsequent drawing
commands. It defines basic drawing attributes such as the colors to use when drawing, the clipping area,
line width and style information, font information, compositing options, and several others.

You can create custom graphics context objects in situations where you want to draw somewhere other than
your view. In Quartz, you primarily do this when you want to capture a series of drawing commands and use
them to create an image or a PDF file. To create the context, you use the CGBitmapContextCreate or
CGPDFContextCreate function. Once you have the context, you can pass it to the drawing functions needed
to create your content.

When creating custom contexts, the coordinate system for those contexts is different than the native coordinate
system used by iPhone OS. Instead of the origin being in the upper-left corner of the drawing surface, it is
in the lower-left corner and the axes point up and to the right. The coordinates you specify in your drawing
commands must take this into consideration or the resulting image or PDF file may appear wrong when
rendered.

Important: Because you use a lower-left origin when drawing into a bitmap or PDF context, you must
compensate for that coordinate system when rendering the resulting content into a view. In other words, if
you create an image and draw it using the CGContextDrawImage function, the image will appear upside
down by default. To correct for this, you must invert the y axis of the CTM (by multiplying it by -1) and shift
the origin from the lower-left corner to the upper-left corner of the view.

If you use a UIImage object to wrap a CGImageRef you create, you do not need to modify the CTM. The
UIImage object automatically compensates for the inverted coordinate system of the CGImageRef type.

For more information about graphics contexts, modifying the graphics state information, and using graphics
contexts to create custom content, seeQuartz 2DProgrammingGuide. For a list of functions used in conjunction
with graphics contexts, see CGContext Reference, CGBitmapContext Reference, and CGPDFContext Reference.

Points Versus Pixels

The Quartz drawing system uses a vector-based drawing model. Compared to a raster-based drawing model,
in which drawing commands operate on individual pixels, drawing commands in Quartz are specified using
a fixed-scale drawing space, known as the user coordinate space. iPhone OS then maps the coordinates in
this drawing space onto the actual pixels of the device. The advantage of this model is that graphics drawn
using vector commands continue to look good when scaled up or down using an affine transform.

In order to maintain the precision inherent in a vector-based drawing system, drawing coordinates are
specified using floating-point values instead of integers. The use of floating-point values for coordinates
makes it possible for you to specify the location of your program's content very precisely. For the most part,
you do not have to worry about how those values are eventually mapped to the device’s screen.

The UIKit Graphics System 87
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

The user coordinate space is the environment that you use for all of your drawing commands. The units of
this space are measured in points. The device coordinate space refers to the native coordinate space of the
device, which is measured in pixels. By default, one point in user coordinate space is equal to one pixel in
device space, which results in 1 point equaling 1/160th of an inch. You should not assume that this 1-to-1
ratio will always be the case, however.

Color and Color Spaces

iPhone OS supports the full range of color spaces available in Quartz; however, most applications should
need only the RGB color space. Because iPhone OS is designed to run on embedded hardware and display
graphics on a screen, the RGB color space is the most appropriate one to use.

The UIColor object provides convenience methods for specifying color values using RGB, HSB, and grayscale
values. When creating colors in this way, you never need to specify the color space. It is determined for you
automatically by the UIColor object.

You can also use the CGContextSetRGBStrokeColor and CGContextSetRGBFillColor functions in the
Core Graphics framework to create and set colors. Although the Core Graphics framework includes support
for creating colors using other color spaces, and for creating custom color spaces, using those colors in your
drawing code is not recommended. Your drawing code should always use RGB colors.

Supported Image Formats

Table 4-1 lists the image formats supported directly by iPhone OS. Of these formats, the PNG format is the
one most recommended for use in your applications.

Table 4-1 Supported image formats

Filename extensionsFormat

.pngPortable Network Graphic (PNG)

.tiff, .tifTagged Image File Format (TIFF)

.jpeg, .jpgJoint Photographic Experts Group (JPEG)

.gifGraphic Interchange Format (GIF)

.bmp, .BMPfWindows Bitmap Format (DIB)

.icoWindows Icon Format

.curWindows Cursor

.xbmXWindow bitmap

88 The UIKit Graphics System
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

Drawing Tips

The following sections provide tips on how to write quality drawing code while ensuring that your application
looks appealing to end users.

Deciding When to Use Custom Drawing Code

Depending on the type of application you are creating, it may be possible to use little or no custom drawing
code. Although immersive applications typically make extensive use of custom drawing code, utility and
productivity applications can often use standard views and controls to display their content.

The use of custom drawing code should be limited to situations where the content you display needs to
change dynamically. For example, a drawing application would need to use custom drawing code to track
the user’s drawing commands and a game would be updating the screen constantly to reflect the changing
game environment. In those situations, you would need to choose an appropriate drawing technology and
create a custom view class to handle events and update the display appropriately.

On the other hand, if the bulk of your application’s interface is fixed, you can render the interface in advance
to one or more image files and display those images at runtime using UIImageView objects. You can layer
image views with other content as needed to build your interface. For example, you could use UILabel
objects to display configurable text and include buttons or other controls to provide interactivity.

Improving Drawing Performance

Drawing is a relatively expensive operation on any platform, and optimizing your drawing code should always
be an important step in your development process. Table 4-2 lists several tips for ensuring that your drawing
code is as optimal as possible. In addition to these tips, you should always use the available performance
tools to test your code and remove hotspots and redundancies.

Table 4-2 Tips for improving drawing performance

ActionTip

During each update cycle, you should update only the portions of your view
that actually changed. If you are using the drawRect: method of UIView
to do your drawing, use the update rectangle passed to that method to limit
the scope of your drawing. For OpenGL drawing, you must track updates
yourself.

Draw minimally

Compositing a view whose contents are opaque requires much less effort
than compositing one that is partially transparent. To make a view opaque,
the contents of the view must not contain any transparency and the opaque
property of the view must be set to YES.

Mark opaque views as such

If every pixel of a PNG image is opaque, removing the alpha channel avoids
the need to blend the layers containing that image. This simplifies
compositing of the image considerably and improves drawing performance.

Remove alpha channels from
opaque PNG files

Drawing Tips 89
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

ActionTip

Creating new views during scrolling should be avoided at all costs. Taking
the time to create new views reduces the amount of time available for
updating the screen, which leads to uneven scrolling behavior.

Reuse table cells and views
during scrolling

By default, UIKit clears a view’s current context buffer prior to calling its
drawRect: method to update that same area. If you are responding to
scrolling events in your view, clearing this region repeatedly during scrolling
updates can be expensive. To disable the behavior, you can change the value
in the clearsContextBeforeDrawing property to NO.

Avoid clearing the previous
content during scrolling

Changing the graphics state requires effort by the window server. If you need
to draw content that uses similar state information, try to draw that content
together to reduce the number of state changes needed.

Minimize graphics state
changes while drawing

Maintaining Image Quality

Providing high-quality images for your user interface should be a priority in your design. Images provide a
reasonably efficient way to display complicated graphics and should be used wherever they are appropriate.
When creating images for your application, keep the following guidelines in mind:

 ■ Use the PNG format for images. The PNG format provides high-quality image content and is the preferred
image format for iPhone OS. In addition, iPhone OS includes an optimized drawing path for PNG images
that is typically more efficient than other formats.

 ■ Create images so that they do not need resizing. If you plan to use an image at a particular size, be
sure to create the corresponding image resource at that size. Do not create a larger image and scale it
down to fit, because scaling requires additional CPU cycles and requires interpolation. If you need to
present an image at variable sizes, include multiple versions of the image at different sizes and scale
down from an image that is relatively close to the target size.

Drawing with Quartz and UIKit

Quartz is the general name for the native window server and drawing technology in iPhone OS. The Core
Graphics framework is at the heart of Quartz, and is the primary interface you use for drawing content. This
framework provides data types and functions for manipulating the following:

 ■ Graphics contexts

 ■ Paths

 ■ Images and bitmaps

 ■ Transparency layers

 ■ Colors, pattern colors, and color spaces

 ■ Gradients and shadings

 ■ Fonts

90 Drawing with Quartz and UIKit
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

 ■ PDF content

UIKit builds on the basic features of Quartz by providing a focused set of classes for graphics-related operations.
The UIKit graphics classes are not intended as a comprehensive set of drawing tools—Core Graphics already
provides that. Instead, they provide drawing support for other UIKit classes. UIKit support includes the
following classes and functions:

 ■ UIImage, which implements an immutable class for displaying images

 ■ UIColor, which provides basic support for device colors

 ■ UIFont, which provides font information for classes that need it

 ■ UIScreen, which provides basic information about the screen

 ■ Functions for generating a JPEG or PNG representation of a UIImage object

 ■ Functions for drawing rectangles and clipping the drawing area

 ■ Functions for changing and getting the current graphics context

For information about the classes and methods that comprise UIKit, see UIKit Framework Reference. For more
information about the opaque types and functions that comprise the Core Graphics framework, see Core
Graphics Framework Reference.

Configuring the Graphics Context

By the time your drawRect: method is called, your view’s built-in drawing code has already created and
configured a default graphics context for you. You can retrieve a pointer to this graphics context by calling
the UIGraphicsGetCurrentContext function. This function returns a reference to a CGContextRef type,
which you pass to Core Graphics functions to modify the current graphics state. Table 4-3 lists the main
functions you use to set different aspects of the graphics state. For a complete list of functions, see CGContext
Reference. This table also lists UIKit alternatives where they exist.

Table 4-3 Core graphics functions for modifying graphics state

UIKit alternativesCore Graphics functionsGraphics state

NoneCGContextRotateCTM

CGContextScaleCTM

CGContextTranslateCTM

CGContextConcatCTM

Current transformation matrix (CTM)

NoneCGContextClipToRectClipping area

NoneCGContextSetLineWidth

CGContextSetLineJoin

CGContextSetLineCap

CGContextSetLineDash

CGContextSetMiterLimit

Line: Width, join, cap, dash, miter
limit

Drawing with Quartz and UIKit 91
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

UIKit alternativesCore Graphics functionsGraphics state

NoneCGContextSetFlatnessAccuracy of curve estimation
(flatness)

NoneCGContextSetAllowsAntialiasingAnti-aliasing setting

UIColor classCGContextSetRGBFillColor

CGContextSetRGBStrokeColor

Color: Fill and stroke settings

NoneCGContextSetAlphaAlpha value (transparency)

NoneCGContextSetRenderingIntentRendering intent

NoneCGContextSetFillColorSpace

CGContextSetStrokeColorSpace

Color space: Fill and stroke settings

UIFont classCGContextSetFont

CGContextSetFontSize

CGContextSetCharacterSpacing

Text: Font, font size, character
spacing, text drawing mode

The UIImage class and
various drawing functions
let you specify which
blend mode to use.

CGContextSetBlendModeBlend mode

The graphics context contains a stack of saved graphics states. When Quartz creates a graphics context, the
stack is empty. Using the CGContextSaveGState function pushes a copy of the current graphics state onto
the stack. Thereafter, modifications you make to the graphics state affect subsequent drawing operations
but do not affect the copy stored on the stack. When you are done making modifications, you can return to
the previous graphics state by popping the saved state off the top of the stack using the
CGContextRestoreGState function. Pushing and popping graphics states in this manner is a fast way to
return to a previous state and eliminates the need to undo each state change individually. It is also the only
way to restore some aspects of the state, such as the clipping path, back to their original settings.

For general information about graphics contexts and using them to configure the drawing environment, see
Graphics Contexts in Quartz 2D Programming Guide.

Creating and Drawing Images

iPhone OS provides support for loading and displaying images using both the UIKit and Core Graphics
frameworks. How you determine which classes and functions to use to draw images depends on how you
intend to use them. Whenever possible, though, it is recommended that you use the classes of UIKit for
representing images in your code. Table 4-4 lists some of the usage scenarios and the recommended options
for handling them.

92 Drawing with Quartz and UIKit
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

Table 4-4 Usage scenarios for images

Recommended usageScenario

Use a UIImageView class to load and display the image. This option assumes
that your view’s only content is an image. You can still layer other views on
top of the image view to draw additional controls or content.

Display an image as the
content of a view

Load and draw the image using the UIImage class.Display an image as an
adornment for part of a
view

Use the UIGraphicsBeginImageContext function to create a new
image-based graphics context. After creating this context, you can draw your
image contents into it and then use the UIGraphicsGetImage-
FromCurrentImageContext function to generate an image based on what
you drew. (If desired, you can even continue drawing and generate additional
images.) When you are done creating images, use the UIGraphicsEnd-
ImageContext function to close the graphic context.

If you prefer using Core Graphics, you can use the CGBitmapContextCreate
function to create a bitmap graphics context and draw your image contents
into it. When you finish drawing, use the CGBitmapContextCreateImage
function to create a CGImageRef from the bitmap context. You can draw the
Core Graphics image directly or use this it to initialize a UIImage object.

Save some bitmap data
into an image object

Create a UIImage object from the original image data. Call the UIImage-
JPEGRepresentation or UIImagePNGRepresentation function to get an
NSData object, and use that object’s methods to save the data to a file.

Save an image as a JPEG or
PNG file

The following example shows how to load an image from your application’s bundle. You can subsequently
use this image object to initialize a UIImageView object, or you can store it and draw it explicitly in your
view’s drawRect: method.

NSString* imagePath = [[NSBundle mainBundle] pathForResource:@"myImage"
ofType:@"png"];
UIImage* myImageObj = [[UIImage alloc] initWithContentsOfFile:imagePath];

To draw an image explicitly in your view’s drawRect: method, you can use any of the drawing methods
available in UIImage. These methods let you specify where in your view you want to draw the image and
therefore do not require you to create and apply a separate transform prior to drawing. Assuming you stored
the previously loaded image in a member variable called anImage, the following example draws that image
at the point (10, 10) in the view.

- (void)drawRect:(CGRect)rect
{
 // Draw the image
 [anImage drawAtPoint:CGPointMake(10, 10)];
}

Drawing with Quartz and UIKit 93
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

Important: If you use the CGContextDrawImage function to draw bitmap images directly, the image data
is inverted along the y axis by default. This is because Quartz images assume a coordinate system with a
lower-left corner origin and positive coordinate axes extending up and to the right from that point. Although
you can apply a transform before drawing, the simpler (and recommended) way to draw Quartz images is
to wrap them in a UIImage object, which compensates for this difference in coordinate spaces automatically.
For more information on creating and drawing images using Core Graphics, see Quartz 2D Programming
Guide.

Creating and Drawing Paths

A path is a description of a 2D geometric scene that uses a sequence of lines and Bézier curves to represent
that scene. UIKit includes the UIRectFrame and UIRectFill functions (among others) for creating drawing
simple paths such as rectangles in your views. Core Graphics also includes convenience functions for creating
simple paths such as rectangles and ellipses. For more complex paths, you must create the path yourself
using the functions of the Core Graphics framework.

To create a path, you use the CGContextBeginPath function to configure the graphics context to receive
path commands. After calling that function, you use other path-related functions to set the path’s starting
point, draw lines and curves, add rectangles and ellipses, and so on. When you are done specifying the path
geometry, you can paint the path directly or create a CGPathRef or CGMutablePathRef data type to store
a reference to that path for later use.

When you want to draw a path in your view, you can stroke it, fill it, or do both. Stroking a path with a function
such as CGContextStrokePath creates a line centered on the path using the current stroke color. Filling
the path with the CGContextFillPath function uses the current fill color or fill pattern to fill the area
enclosed by the path’s line segments.

For more information on how to draw paths, including information about how you specify the points for
complex path elements, see Paths in Quartz 2D Programming Guide. For information on the functions you
use to create paths, see CGContext Reference and CGPath Reference.

Creating Patterns, Gradients, and Shadings

The Core Graphics framework includes additional functions for creating patterns, gradients, and shadings.
You use these types to create non monochrome colors and use them to fill the paths you create. Patterns
are created from repeating images or content. Gradients and shadings provide different ways to create
smooth transitions from color to color.

The details for creating and using patterns, gradients, and shadings are all covered inQuartz 2DProgramming
Guide.

Drawing with OpenGL ES

The Open Graphics Library (OpenGL) is a cross-platform C-based interface used to create 2D and 3D content
on desktop systems. It is typically used by games developers or anyone needing to perform drawing with
high frame rates. You use OpenGL functions to specify primitive structures such as points, lines, and polygons

94 Drawing with OpenGL ES
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

and the textures and special effects to apply to those structures to enhance their appearance. The functions
you call send graphics commands to the underlying hardware, where they are then rendered. Because
rendering is done mostly in hardware, OpenGL drawing is usually very fast.

OpenGL for Embedded Systems is a pared-down version of OpenGL that is designed for mobile devices and
takes advantage of modern graphics hardware. If you want to create OpenGL content for iPhone OS–based
devices—that is, iPhone or iPod Touch—you’ll use OpenGL ES. The OpenGL ES framework
(OpenGLES.framework) provided with iPhone OS conforms to the OpenGL ES v1.1 specification. You can
find out more about OpenGL ES by reading Polygons In Your Pocket: Introducing OpenGL ES.

This section is designed to get you started writing OpenGL ES applications for iPhone OS–based devices.
“Setting Up a Rendering Surface” (page 95) provides step-by-step instructions for creating a surface that you
can draw to using OpenGL ES. But before you start writing the OpenGL ES portion of your application, you’ll
want to read “Implementation Details” (page 98) to learn about the capabilities of iPhone OS–based devices
and the specifics of the OpenGL ES implementation in iPhone OS. “Best Practices” (page 96) provides coding
guidelines that can help your application perform optimally.

Setting Up a Rendering Surface

The setup for drawing with OpenGL ES is straightforward and requires the same types of tasks you’d perform
to draw to surfaces on a Macintosh computer. The primary difference is that you’ll use the EAGL API to set
up the window surface instead of an API such as CGL or AGL. The EAGL API provides the interface between
the OpenGL ES renderer and the windows and views of an iPhone application. (See OpenGL ES Framework
Reference.)

When you set up your Xcode project, make sure you link to OpenGLES.framework. Then, set up a surface
for rendering by following these steps:

1. Subclass UIView and set up the view appropriately for your iPhone application.

2. Override the layerClass method of the UIView class so that it returns a CAEAGLLayer object rather
than a CALayer object.

+ (Class) layerClass
{
 return [CAEAGLLayer class];
}

3. Get the layer associated with the view by calling the layer method of UIView.

myEAGLLayer = (CAEAGLLayer*)self.layer;

4. Set the layer properties.

For optimal performance, it’s recommended that you mark the layer as opaque by setting the opaque
property provided by the CALayer class. See “Best Practices” (page 96).

5. Optionally configure the surface properties of the rendering surface by assigning a new dictionary of
values to the drawableProperties property of the CAEAGLLayer object.

The EAGL framework lets you specify custom color formats and whether or not the native surface retains
its contents after presenting them. You identify these properties in the dictionary using the
kEAGLDrawablePropertyColorFormat and kEAGLDrawablePropertyRetainedBacking keys. For
a list of values for these keys, see the EAGLDrawable protocol.

Drawing with OpenGL ES 95
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

http://khronos.org/opengles/1_X/
http://www.opengl.org/pipeline/article/vol003_2/

6. Create a new EAGLContext object to manage the drawing context. You typically create and initialize
this object as follows:

EAGLContext* myContext = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];

If you want to share objects (texture objects, vertex buffer objects, and so forth) between multiple
contexts, use the initWithAPI:sharegroup: initialization method instead. For each context that
should share a given set of objects, pass the same EAGLSharegroup object in the sharegroupparameter.

7. Make your EAGLContext object the context for the current thread using the setCurrentContext:
class method.

You can have one current context per thread.

8. Create and bind a new render buffer to the GL_RENDERBUFFER_OES target. (Typically you would do this
in a two-step process using the glGenRenderbufferOES function to allocate an unused name and the
glBindRenderbufferOES functions create and bind the render buffer to that name.)

9. Attach the newly created render buffer target to your view’s layer object using the
renderBufferStorage:fromDrawable: method of your EAGLContext object. (The layer provides
the underlying storage for the render buffer.) For example, given the context created previously, you
would use the following code to bind the buffer to the view’s layer (obtained previously and stored in
the myEAGLLayer variable):

[myContext renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:myEAGLLayer];

The width, height, and format of the render buffer storage are derived from the bounds and properties
of the CAEAGLLayer object at the moment you call the renderbufferStorage:fromDrawable:
method. If you change the layer’s bounds later, Core Animation scales the content by default. To avoid
scaling, you must recreate the renderbuffer storage by calling renderbufferStorage:fromDrawable:.

10. Configure your frame buffer as usual and bind your render buffer to the attach points of your frame
buffer.

Best Practices

To create great OpenGL ES applications that run optimally, whenever possible follow the guidelines discussed
in this section. You’ll also want to read “Implementation Details” (page 98) to see how your code can take
advantage of the specific features of the GPU.

General Guidelines

When developing OpenGL ES applications for iPhone OS–based devices:

 ■ Use an EAGL surface that is the same size as size of the screen. Read the bounds property of the UIScreen
class to get the screen size.

 ■ Do not apply any Core Animation transforms to the CAEAGLLayer object that contains the EAGL window
surface.

 ■ Set the opaque property of the CALayer class to mark the CAEAGLLayer object as opaque.

96 Drawing with OpenGL ES
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

 ■ Do not place any other Core Animation layers or UIKit views above the CAEAGLLayer object that you’re
rendering to.

 ■ If your application needs to present landscape content, avoid transforming the layer. Instead, set the
OpenGL ES state to rotate everything by changing the Model/View/Projection transform, and swapping
the width and height arguments to the glViewport and glScissor functions.

 ■ Limit interactions between OpenGL ES and UIKit or Core Animation rendering. For example, avoid
rendering with OpenGL ES while you render notifications, messages, or any other user interface controls
provided by UIKit or Core Animation.

 ■ Economize memory usage. iPhone OS–based devices use a shared memory system. Memory used by
your application’s graphics is not available for the system. For example, after loading GL textures, free
your copy of the pixel data if you no longer need to use it. (See “Memory” (page 100))

 ■ To implement transparency, use alpha blending instead of alpha testing. Alpha testing is considerably
more expensive than alpha blending.

 ■ Disable unused or unnecessary features. For instance, do not enable lighting or blending if you do not
need them.

 ■ Minimize scissor state changes. They are considerably more expensive on OpenGL ES for iPhone OS than
they are on OpenGL for Mac OS X.

 ■ Minimize the number of times you call the EAGLContext class method setCurrentContext: during
a rendering frame. Changing the current surface on OpenGL ES for iPhone OS is considerably more
expensive than it is on OpenGL for Mac OS X. Rather than using multiple contexts, consider using multiple
frame buffer objects instead.

 ■ Operations that depend on completing previous rendering commands (such as glTexSubImage,
glCopyTexImage, glCopyTexSubImage, glReadPixels, glFlush, glFinish, or
setCurrentContext:) can be very expensive if you perform them in the middle of a frame. If you need
these operations, perform them at the beginning or end of a frame.

CPU Usage

Respecifying OpenGL ES state can cause the CPU to perform unnecessary work. Use techniques to reduce
CPU usage. For example, use a texture atlas. This allows you to perform additional draw calls without changing
the texture binding. (Or even better, collapse multiple draw calls into one.) If you create a texture atlas, you
also need to sort state calls to avoid rebinding the texture. Otherwise, you won’t see a performance benefit.

Vertex Data

When creating geometry:

 ■ Reduce overall geometry by doing such things as using indexed triangle strips and providing only as
much detail as the user can see.

 ■ To achieve fine detail in your drawing without increasing the vertex count, consider using DOT3 lighting
or textures.

 ■ Memory bandwidth is limited, so use the smallest acceptable type for your data. Specify vertex colors
using 4 unsigned byte values. Specify texture coordinates with 2 or 4 unsigned byte or short values
instead of floating-point values, if you can.

Drawing with OpenGL ES 97
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

Textures

To get the best performance with textures:

 ■ Use textures with the smallest size per pixel that you can afford. If possible, use 565 textures instead of
8888.

 ■ Use compressed textures stored in the PVRTC format. See the specification for the extension
GL_IMG_texture_compression_pvrtc.

 ■ Use mipmapping with the LINEAR_MIPMAP_NEAREST option.

 ■ Create and load all textures prior to rendering. Don’t upload or modify textures during a frame. Specifically,
avoid calling the functions glTexSubImage or glCopyTexSubImage in the middle of a frame.

 ■ Use multitexturing rather than applying textures over multiple passes.

Drawing Order

Drawing order is important for hardware that uses tile based deferred rendering. (See “Rendering Path” (page
100).)

 ■ Don’t waste CPU time sorting objects front to back. The tile based deferred rendering model used by
the GPU makes sorting unnecessary.

 ■ Draw opaque objects first; draw alpha blended objects last.

Lighting

Simplify lighting as much as possible.

 ■ Use the fewest lights possible and the simplest lighting type for your application. For example, consider
using directional lights instead of spot lighting, which incurs a higher performance cost.

 ■ If you can, precompute lighting. Static lighting gives better performance than dynamic. You can compute
the lighting ahead of time and store the result in textures or color arrays that you can look up later.

Debugging and Tuning

The Instruments application includes an OpenGL ES instrument that you can use to gather information about
the runtime behavior of your OpenGL code. In addition, you can set a breakpoint on the opengl_error_break
symbol in GDB to see when OpenGL errors are generated.

Implementation Details

Understanding the features of the hardware and the specifics of the implementation of OpenGL ES can help
you tailor your code to get the best performance. Use the information in this section, along with “Best
Practices” (page 96), as you design your OpenGL ES application.

98 Drawing with OpenGL ES
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

OpenGL ES Implementation

The OpenGL ES implementation in iPhone OS differs from other implementations of OpenGL ES in the
following ways:

 ■ The maximum texture size is 1024 x 1024.

 ■ 2D texture targets are supported; other texture targets are not.

 ■ Stencil buffers aren’t available.

Hardware Capabilities

When developing any OpenGL application, it’s important to check for the functionality that your application
uses and have a contingency in place if the hardware doesn’t support the particular feature or extension that
you want to use. This is true for Macintosh computers and it is even more important when writing OpenGL
ES applications for iPhone OS–based devices. It’s essential that you understand the capabilities of the specific
hardware that you are writing for. Keep in mind that, unlike OpenGL on Macintosh computers, there is no
software rendering fallback option for iPhone OS–based devices.

The graphics hardware for iPhone OS–based devices has the following limitations:

 ■ The texture magnification and magnification filters (within a texture level) must match. For example:

 ❏ Supported: GL_TEXTURE_MAG_FILTER =GL_LINEAR, GL_TEXTURE_MIN_FILTER =
GL_LINEAR_MIPMAP_LINEAR

 ❏ Supported: GL_TEXTURE_MAG_FILTER = GL_NEAREST, GL_TEXTURE_MIN_FILTER =
GL_LINEAR_MIPMAP_NEAREST

 ❏ Not Supported: GL_TEXTURE_MAG_FILTER = GL_NEAREST, GL_TEXTURE_MIN_FILTER =
GL_LINEAR_MIPMAP_LINEAR

There are a few, rarely used texture environment operations that aren’t available:

 ■ If the value of GL_COMBINE_RGB is GL_MODULATE, only one of the two operands may read from an
GL_ALPHA source.

 ■ If the value of GL_COMBINE_RGB is GL_INTERPOLATE, GL_DOT3_RGB, or GL_DOT3_RGBA, then several
combinations of GL_CONSTANT and GL_PRIMARY_COLOR sources and GL_ALPHA operands do not work
properly.

 ■ If the value of GL_COMBINE_RGB or GL_COMBINE_ALPHA is GL_SUBTRACT, then GL_SCALE_RGB or
GL_SCALE_ALPHA must be 1.0.

 ■ If the value of GL_COMBINE_ALPHA is GL_INTERPOLATE or GL_MODULATE, only one of the two sources
can be GL_CONSTANT.

 ■ The value of GL_TEXTURE_ENV_COLOR must be the same for all texture units.

Supported Extensions

These are the OpenGL ES extensions that you can use when developing OpenGL ES applications for iPhone
OS–based devices:

Drawing with OpenGL ES 99
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

 ■ GL_OES_blend_subtract

 ■ GL_OES_compressed_paletted_texture

 ■ GL_OES_depth24

 ■ GL_OES_draw_texture

 ■ GL_OES_framebuffer_object

 ■ GL_OES_mapbuffer

 ■ GL_OES_matrix_palette

 ■ GL_OES_point_size_array

 ■ GL_OES_point_sprite

 ■ GL_OES_read_format

 ■ GL_OES_rgb8_rgba8

 ■ GL_OES_texture_mirrored_repeat

 ■ GL_EXT_texture_filter_anisotropic

 ■ GL_EXT_texture_lod_bias

 ■ GL_IMG_read_format

 ■ GL_IMG_texture_compression_pvrtc

 ■ GL_IMG_texture_format_BGRA8888

Memory

OpenGL ES applications should use no more than 24 MB of memory for both textures and surfaces. This 24
MB is not dedicated graphics memory but comes from the main system memory. Because main memory is
shared with other iPhone applications and the system, your application should use as little of it as possible.
“Best Practices” (page 96) provides several guidelines for ways to use memory economically. In particular,
see “General Guidelines” (page 96) and “Vertex Data” (page 97).

Rendering Path

The GPU in the iPhone and iPod touch is a PowerVR MBX Lite. This GPU uses a technique known as Tile Based
Deferred Rendering (TBDR). When you submit OpenGL ES commands for rendering, TBDR behaves very
differently from a streaming renderer. A streaming renderer simply executes rendering commands in order,
one after another. In contrast, a TBDR defers any rendering until it accumulates a large number of rendering
commands, and then operates on this command list as a single scene. The framebuffer is divided up into a
number of tiles, and the scene is drawn once for each tile, each time drawing only the content that is actually
visible within that tile. The TBDR approach has several advantages and disadvantages compared to streaming
renderers. Understanding these differences will help you write better performing software.

The most significant advantage of TBDR is that it can make much more efficient use of available bandwidth
to memory. Constraining rendering to only one tile allows the GPU to more effectively cache the framebuffer,
making depth testing blending much more efficient. Otherwise, the memory bandwidth consumed by these
framebuffer operations often becomes a significant performance bottleneck.

When using deferred rendering, some operations become more expensive. For example, if you call the
function glTexSubImage in the middle of a frame, the accumulated command list may include commands
from both before and after the call to glTexSubImage. This command list needs to reference both the old

100 Drawing with OpenGL ES
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

http://khronos.org/registry/gles/extensions/OES/OES_blend_subtract.txt
http://khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://khronos.org/registry/gles/extensions/OES/OES_depth24.txt
http://khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://khronos.org/registry/gles/extensions/OES/OES_framebuffer_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
http://khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://khronos.org/registry/gles/extensions/OES/OES_point_size_array.txt
http://khronos.org/registry/gles/extensions/OES/OES_point_sprite.txt
http://khronos.org/registry/gles/extensions/OES/OES_read_format.txt
http://khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://khronos.org/registry/gles/extensions/OES/OES_texture_mirrored_repeat.txt
http://khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt
http://www.opengl.org/registry/specs/EXT/texture_lod_bias.txt
http://www.imgtec.com/powervr/mbx.asp

and new version of the texture image at the same time, forcing the entire texture to be duplicated even if
only a small portion of the texture is updated. Duplication can make functions such as glTexSubImage
significantly more expensive on a deferred renderer than a streaming renderer.

The PowerVR GPU relies on more than just TBDR to optimize performance; it performs hidden surface removal
before fragment processing. If the GPU determines that a pixel won’t be visible, it discards the pixel without
performing texture sampling or fragment color calculations. Removing hidden pixels can significantly improve
performance for scenes that have obscured content. To gain the most benefit from this feature, you should
try to draw as much of the scene with opaque content as possible and minimize use of blending and alpha
testing.

For more information on exactly how these features are implemented and how your application can best
take advantage of them, see PowerVR Technology Overview and PowerVR MBX 3D Application Development
Recommendations.

Simulator Capabilities

The iPhone simulator includes a complete and conformant implementation of OpenGL ES 1.1 that you can
use for your application development. This implementation differs in a few ways from the implementation
found in iPhone OS–based devices. In particular, the simulator does not have the same limitations regarding
texture magnification filters or texture environment operations that are described in “Hardware
Capabilities” (page 99). In addition, the simulator supports antialiased lines while iPhone OS–based devices
do not.

Important: It is important to understand that the rendering performance of OpenGL ES in the simulator has
no relation to the performance of OpenGL ES on an actual device. The simulator provides an optimized
software rasterizer that takes advantage of the vector processing capabilities of your Macintosh computer.
As a result, your OpenGL ES code may run faster or slower in Mac OS X (depending on your computer and
what you are drawing) than on an actual device. Therefore, you should always profile and optimize your
drawing code on a real device and not assume that the simulator reflects real-world performance.

The following sections provide additional details about the OpenGL ES support available in the iPhone
simulator.

Supported Extensions

The iPhone simulator supports all of the OpenGL ES 1.1 core functionality and most of the extensions supported
by iPhone OS–based devices. The following extensions are not supported by the simulator, however:

 ■ GL_OES_draw_texture

 ■ GL_OES_matrix_palette

 ■ GL_EXT_texture_filter_anisotropic

 ■ GL_IMG_texture_compression_pvrtc

For a list of the extensions supported by the hardware, see “Supported Extensions” (page 99).

Drawing with OpenGL ES 101
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20MBX.3D%20Application%20Development%20Recommendations.1.0.67a.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20MBX.3D%20Application%20Development%20Recommendations.1.0.67a.External.pdf
http://khronos.org/registry/gles/extensions/OES/OES_draw_texture.txt
http://khronos.org/registry/gles/extensions/OES/OES_matrix_palette.txt
http://khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt

Memory

On a device, OpenGL ES applications can use no more than 24 MB of memory for both textures and surfaces.
The simulator does not enforce this limit. As a result, your code can allocate as much memory as your
computer’s rendering hardware supports. Be sure to keep track of the size of your assets during development.

Rendering Path

In contrast to the Tile Based Deferred Rendering technique used in devices, the simulator’s software rasterizer
uses a traditional streaming model for OpenGL ES commands. Objects are transformed and rendered
immediately as you specify them. Consequently, the performance of some operations can differ significantly
from that on actual devices.

As with any two different implementations of OpenGL ES, there may be small differences between the pixels
rendered by the simulator and those rendered by the device. For example, OpenGL ES allows some calculations,
such as color interpolation and texture mipmap filtering, to be approximated. In general, the two
implementations will produce similar results, but do not rely on them to be bit-for-bit identical.

For More Information

You may want to consult these resources as you develop OpenGL ES applications for iPhone OS–based
devices:

 ■ OpenGL ES 1.X Specification is the official definition of this technology provided by the Khronos Group.
You’ll also find other useful information on this website.

 ■ PowerVR MBX OpenGL ES 1.x SDK page provides information about the specific OpenGL ES
implementation supported by the PowerVR MBX graphics hardware.

 ■ OpenGL ES 1.1 Reference Pages provides a complete reference to OpenGL ES specification, indexed
alphabetically as well as by theme.

 ■ OpenGLES FrameworkReference describes the functions and constants that provide the interface between
OpenGL ES and the iPhone user interface.

Applying Core Animation Effects

Core Animation is an Objective-C framework that provides infrastructure for creating fluid, real-time animations
quickly and easily. Core Animation is not a drawing technology itself, in the sense that it does not provide
primitive routines for creating shapes, images, or other types of content. Instead, it is a technology for
manipulating and displaying content that you created using other technologies.

Most applications can benefit from using Core Animation in some form in iPhone OS. Animations provide
feedback to the user about what is happening. For example, when the user navigates through the Settings
application, screens slide in and out of view based on whether the user is navigating further down the
preferences hierarchy or back up to the root node. This kind of feedback is important and provides contextual
information for the user. It also enhances the visual style of an application.

102 Applying Core Animation Effects
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

http://www.khronos.org/opengles/1_X/
http://www.khronos.org/
http://www.imgtec.com/powervr/insider/sdk/KhronosOpenGLES1xMBX.asp
http://www.khronos.org/opengles/documentation/opengles1_1/gl_egl_ref_1_1_20041110/index.html

In most cases, you may be able to reap the benefits of Core Animation with very little effort. For example,
several properties of the UIView class (including the view’s frame, center, color, and opacity—among others)
can be configured to trigger animations when their values change. You have to do some work to let UIKit
know that you want these animations performed, but the animations themselves are created and run
automatically for you. For information about how to trigger the built-in view animations, see “Animating
Views” (page 67).

When you go beyond the basic animations, you must interact more directly with Core Animation classes and
methods. The following sections provide information about Core Animation and show you how to work with
its classes and methods to create typical animations in iPhone OS. For additional information about Core
Animation and how to use it, see Core Animation Programming Guide.

About Layers

The key technology in Core Animation is the layer object. Layers are lightweight objects that are similar in
nature to views, but that are actually model objects that encapsulate geometry, timing, and visual properties
for the content you want to display. The content itself is provided in one of three ways:

 ■ You can assign a CGImageRef to the contents property of the layer object.

 ■ You can assign a delegate to the layer and let the delegate handle the drawing.

 ■ You can subclass CALayer and override one of the display methods.

When you manipulate a layer object’s properties, what you are actually manipulating is the model-level data
that determines how the associated content should be displayed. The actual rendering of that content is
handled separately from your code and is heavily optimized to ensure it is fast. All you must do is set the
layer content, configure the animation properties, and then let Core Animation take over.

For more information about layers and how they are used, see Core Animation Programming Guide.

About Animations

When it comes to animating layers, Core Animation uses separate animation objects to control the timing
and behavior of the animation. The CAAnimation class and its subclasses provide different types of animation
behaviors that you can use in your code. You can create simple animations that migrate a property from one
value to another, or you can create complex keyframe animations that track the animation through the set
of values and timing functions you provide.

Core Animation also lets you group multiple animations together into a single unit, called a transaction. The
CATransaction object manages the group of animations as a unit. You can also use the methods of this
class to set the duration of the animation.

For examples of how to create custom animations, see Animation Types and Timing Programming Guide.

Applying Core Animation Effects 103
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

104 Applying Core Animation Effects
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Graphics and Drawing

The text system in iPhone OS was designed with the modest needs of mobile users in mind. The text system
was designed to handle the single and multi-line text input that are commonly used in email and SMS
programs. The text system also supports Unicode and has several different input methods, making it easy
to display and read text in many different languages.

About Text and Web Support

The text system in iPhone OS provides a tremendous amount of power while still being very simple to use.
The UIKit framework includes several high-level classes for managing the display and input of text. This
framework also includes a more advanced class for displaying HTML and JavaScript-based content.

The following sections describe the basic support for text and web content in iPhone OS. For more information
about each of the classes listed in this section, see UIKit Framework Reference.

Text Views

The UIKit framework provides three primary classes for displaying text content:

 ■ UILabel displays static text strings

 ■ UITextField displays a single line of editable text

 ■ UITextView displays multiple lines of editable text

These classes support the display of arbitrarily large amounts of text, although labels and text fields are
typically used for relatively small amounts of text. To make the displayed text easier to read on the smaller
screens of iPhone OS–based devices, however, these classes do not support the kinds of advanced formatting
you might find in desktop operating systems like Mac OS X. All three classes still allow you to specify the font
information, including size and styling options, that you might otherwise want, but the font information you
specify is applied to all of the text associated with the object.

Figure 5-1 shows examples of the available text classes as they appear on screen. These examples were taken
from the UICatalog sample application, which demonstrates many of the views and controls available in
UIKit. The image on the left shows several different styles of text fields while the image on the right shows
a single text view. The callouts displayed on the gray background are themselves UILabel objects embedded
inside the table cells used to display the different views. There is also a UILabel object with the text “Left
View” at the bottom of the screen on the left.

About Text and Web Support 105
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Figure 5-1 Text classes in the UICatalog application

When working with editable text views, you should always provide a delegate object to manage the editing
session. Text views send several different notifications to the delegate to let them know when editing begins,
when it ends, and to give them a chance to override some editing actions. For example, the delegate can
decide if the current text contains a valid value and prevent the editing session from ending if it does not.
When editing does finally end, you also use the delegate to get the resulting text value and update your
application’s data model.

Because there are slight differences in their intended usage, the delegate methods for each text view are
slightly different. A delegate that supports the UITextField class implements the methods of the
UITextFieldDelegate protocol. Similarly, a delegate that supports the UITextView class implements the
methods of the UITextViewDelegate protocol. In both cases, you are not required to implement any of
the protocol methods but if you do not, the text field is not going to be of much use to you. For more
information on the methods in these two protocols, see UITextFieldDelegate Protocol Reference and
UITextViewDelegate Protocol Reference.

106 About Text and Web Support
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Web View

The UIWebView class lets you integrate what is essentially a miniature web browser into your application’s
user interface. The UIWebView class makes full use of the same web technologies used to implement Safari
in iPhone OS, including full support for HTML, CSS, and JavaScript content. The class also supports many of
the built-in gestures that users are familiar with in Safari. For example, you can double-click and pinch to
zoom in and out of the page and you can scroll around the page by dragging your finger.

In addition to displaying content, you can also use a web view object to gather input from the user through
the use of web forms. Like the other text classes in UIKit, if you have an editable text field on a form in your
web page, tapping that field brings up a keyboard so that the user can enter text. Because it is an integral
part of the web experience, the web view itself manages the displaying and dismissing of the keyboard for
you.

Figure 5-2 shows an example of a UIWebView object from the the UICatalog sample application, which
demonstrates many of the views and controls available in UIKit. Because it just displays HTML content, if you
want the user to be able to navigate pages much like they would in a web browser, you need to add controls
to do so. For example, the web view in the figure occupies the space below the text field containing the
target URL and does not contain the text field itself.

About Text and Web Support 107
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Figure 5-2 A web view

UIWebView object

A web view provides information about when pages are loaded, and whether there were any load errors,
through its associated delegate object. A web delegate is an object that implements one or more methods
of the UIWebViewDelegate protocol. Your implementations of the delegate methods can respond to failures
or perform other tasks related to the loading of a web page. For more information about the methods of the
UIWebViewDelegate protocol, see UIWebViewDelegate Protocol Reference.

Keyboards and Input Methods

Whenever the user taps in an object capable of accepting text input, the object asks the system to display
an appropriate keyboard. Depending on the needs of your program and the user’s preferred language, the
system might display one of several different keyboards. Although your application cannot control the user’s
preferred language (and thus the keyboard’s input method), it can control attributes of the keyboard that
indicate its intended use, such as the configuration of any special keys and its behaviors.

108 About Text and Web Support
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

You configure the attributes of the keyboard directly through the text objects of your application. The
UITextField and UITextView classes both conform to the UITextInputTraits protocol, which defines
the properties for configuring the keyboard. Setting these properties programmatically or in the Interface
Builder inspector window causes the system to display the keyboard of the designated type.

Note: Although the UIWebView class does not support the UITextInputTraits protocol directly, you can
configure some keyboard attributes for text input elements. In particular, you can include autocorrect and
autocapitalization attributes in the definition of an input element to specify the keyboard’s behaviors,
as shown in the following example.

<input type="text" size="30" autocorrect="off" autocapitalization="on">

You cannot specify the keyboard type in input elements. The web view displays a custom keyboard that is
based on the default keyboard but includes some additional controls for navigating between form elements.

The default keyboard configuration is designed for general text input. Figure 5-3 displays the default keyboard
along with several other keyboard configurations. The default keyboard displays an alphabetical keyboard
initially but the user can toggle it and display numbers and punctuation as well. Most of the other keyboards
offer similar features as the default keyboard but provide additional buttons that are specially suited to
particular tasks. However, the phone and numerical keyboards offer a dramatically different layout that is
tailored towards numerical input.

Figure 5-3 Several different keyboard types

Default

URL Phone

Email

To facilitate the language preferences of different users, iPhone OS also supports different input methods
and keyboard layouts for different languages, some of which are shown in Figure 5-4. The input method and
layout for the keyboard is determined by the user’s language preferences.

About Text and Web Support 109
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Figure 5-4 Several different keyboards and input methods

English

Japanese - Romanji Chinese - Handwriting

Korean

Japanese - Kana

Russian

Managing the Keyboard

Although many UIKit objects display the keyboard automatically in response to user interactions, your
application still has some responsibilities for configuring and managing the keyboard. The following sections
describe those responsibilities.

Receiving Keyboard Notifications

When the keyboard is shown or hidden, iPhone OS sends out the following notifications to any registered
observers:

110 Managing the Keyboard
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

 ■ UIKeyboardWillShowNotification

 ■ UIKeyboardDidShowNotification

 ■ UIKeyboardWillHideNotification

 ■ UIKeyboardDidHideNotification

The system sends keyboard notifications when the keyboard first appears, when it disappears, any time the
owner of the keyboard changes, or any time your application’s orientation changes. In each situation, the
system sends only the appropriate subset of messages. For example, if the owner of the keyboard changes,
the system sends a UIKeyboardWillHideNotification message, but not a
UIKeyboardDidHideNotification message, to the current owner because the change never causes the
keyboard to be hidden. The delivery of the UIKeyboardWillHideNotification is simply a way to alert
the current owner that it is about to lose the keyboard focus. Changing the orientation of the keyboard does
send both will and did hide notifications, however, because the keyboards for each orientation are different
and thus the original must be hidden before the new one is displayed.

Each keyboard notification includes information about the size and position of the keyboard on the screen.
You should always use the information in these notifications as opposed to assuming the keyboard is a
particular size or in a particular location. The size of the keyboard is not guaranteed to be the same from one
input method to another and may also change between different releases of iPhone OS. In addition, even
for a single language and system release, the keyboard dimensions can vary depending on the orientation
of your application. For example, Figure 5-5 shows the relative sizes of the URL keyboard in both the portrait
and landscape modes. Using the information inside the keyboard notifications ensures that you always have
the correct size and position information.

Figure 5-5 Relative keyboard sizes in portrait and landscape modes

216 pixels

320 pixels

480 pixels

162 pixels

Managing the Keyboard 111
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Note: The rectangle contained in the UIKeyboardBoundsUserInfoKey of the info dictionary should be
used only for the size information it contains. Because the keyboard is animated into position, the actual
bounding rectangle of the keyboard changes over time. The starting and ending positions of the keyboard
are therefore stored in the info dictionary under the UIKeyboardCenterBeginUserInfoKey and
UIKeyboardCenterEndUserInfoKey keys.

One reason to use keyboard notifications is so that you can reposition content that is obscured by the
keyboard when it is visible. For information on how to handle this scenario, see “Moving Content That Is
Located Under the Keyboard” (page 113).

Displaying the Keyboard

When the user taps a view, the system automatically designates that view as the first responder. When this
happens to a view that contains editable text, the view initiates an editing session for that text. At the
beginning of that editing session, the view asks the system to display the keyboard, if it is not already visible.
If the keyboard is already visible, the change in first responder causes text input from the keyboard to be
redirected to the newly tapped view.

Because the keyboard is displayed automatically when a view becomes the first responder, you often do not
need to do anything to display it. However, you can programmatically display the keyboard for an editable
text view by calling that view’s becomeFirstResponder method. Calling this method makes the target
view the first responder and begins the editing process just as if the user had tapped on the view.

If your application manages several text-based views on a single screen, it is a good idea to track which view
is currently the first responder so that you can dismiss the keyboard later.

Dismissing the Keyboard

Although it typically displays the keyboard automatically, the system does not dismiss the keyboard
automatically. Instead, it is your application’s responsibility to dismiss the keyboard at the appropriate time.
Typically, you would do this in response to a user action. For example, you might dismiss the keyboard when
the user taps the Return or Done button on the keyboard or taps some other button in your application’s
interface. Depending on how you configured the keyboard, you might need to add some additional controls
to your user interface to facilitate the keyboard’s dismissal.

To dismiss the keyboard, you call the resignFirstResponder method of the text-based view that is
currently the first responder. When a text view resigns its first responder status, it ends its current editing
session, notifies its delegate of that fact, and dismisses the keyboard. In other words, if you have a variable
called myTextField that points to the UITextField object that is currently the first responder, dismissing
the keyboard is as simple as doing the following:

[myTextField resignFirstResponder];

Everything from that point on is handled for you automatically by the text object.

112 Managing the Keyboard
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Moving Content That Is Located Under the Keyboard

When asked to display the keyboard, the system slides it in from the bottom of the screen and positions it
over your application’s content. Because it is placed on top of your content, it is possible for the keyboard
to be placed on top of the text object that the user wanted to edit. When this happens, you must adjust your
content so that the target object remains visible.

Adjusting your content typically involves temporarily resizing one or more views and positioning them so
that the text object remains visible. The simplest way to manage text objects with the keyboard is to embed
them inside a UIScrollView object (or one of its subclasses like UITableView). When the keyboard is
displayed, all you have to do is resize the scroll view and scroll the desired text object into position. Thus, in
response to a UIKeyboardDidShowNotification, your handler method would do the following:

1. Get the size of the keyboard.

2. Subtract the keyboard height from the height of your scroll view.

3. Scroll the target text field into view.

Figure 5-6 illustrates the preceding steps for a simple application that embeds several text fields inside a
UIScrollView object. When the keyboard appears, the notification handler method resizes the scroll view
and then uses the scrollRectToVisible:animated:method of UIScrollView to scroll the tapped text
field (in this case the email field) into view.

Figure 5-6 Adjusting content to accommodate the keyboard

3. Email field scrolled into view1. User taps email field 2. Scroll view resized to new height

Managing the Keyboard 113
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

Note: When setting up your own scroll views, be sure to configure the autoresizing rules for any content
views appropriately. In the preceding figure, the text fields are actually embedded inside a generic UIView
object, which is itself embedded in the UIScrollView object. If the generic view’s
UIViewAutoresizingFlexibleWidth and UIViewAutoresizingFlexibleHeight autoresizing options
are set, changing the scroll view’s frame size also changes the frame of the generic view, which could yield
undesirable results. Disabling these options for that view ensures that the view retains its size and its contents
are scrolled correctly.

Listing 5-1 shows the code for registering to receive keyboard notifications and shows the handler methods
for those notifications. This code is implemented by the view controller that manages the scroll view, and
the scrollView variable is an outlet that points to the scroll view object. Each handler method gets the
keyboard size from the info dictionary of the notification and adjusts the scroll view height by the
corresponding amount. In addition, the keyboardWasShown: method scrolls the rectangle of the active
text field, which is stored in the activeField variable and set when the textFieldDidBeginEditing:
delegate method is called. (In this example, the view controller also acts as the delegate for each of the text
fields.)

Listing 5-1 Handling the keyboard notifications

- (void)registerForKeyboardNotifications
{
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWasShown:)
 name:UIKeyboardDidShowNotification object:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardWasHidden:)
 name:UIKeyboardDidHideNotification object:nil];
}

// Called when the UIKeyboardDidShowNotification is sent.
- (void)keyboardWasShown:(NSNotification*)aNotification
{
 if (keyboardShown)
 return;

 NSDictionary* info = [aNotification userInfo];

 // Get the size of the keyboard.
 NSValue* aValue = [info objectForKey:UIKeyboardBoundsUserInfoKey];
 CGSize keyboardSize = [aValue CGRectValue].size;

 // Resize the scroll view (which is the root view of the window)
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardSize.height;
 scrollView.frame = viewFrame;

 // Scroll the active text field into view.
 CGRect textFieldRect = [activeField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardShown = YES;
}

114 Managing the Keyboard
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

// Called when the UIKeyboardDidHideNotification is sent
- (void)keyboardWasHidden:(NSNotification*)aNotification
{
 NSDictionary* info = [aNotification userInfo];

 // Get the size of the keyboard.
 NSValue* aValue = [info objectForKey:UIKeyboardBoundsUserInfoKey];
 CGSize keyboardSize = [aValue CGRectValue].size;

 // Reset the height of the scroll view to its original value
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardSize.height;
 scrollView.frame = viewFrame;

 keyboardShown = NO;
}

The keyboardShown variable from the preceding listing is a Boolean value used to track whether the keyboard
is already visible. If your interface has multiple text fields, the user can tap between them to edit the values
in each one. When that happens, however, the keyboard does not disappear but the system does still generate
UIKeyboardDidShowNotification notifications each time editing begins in a new text field. By tracking
whether the keyboard was actually hidden, this code prevents the scroll view from being reduced in size
more than once.

Drawing Text

In addition to the UIKit classes for displaying and editing text, iPhone OS also includes several ways to draw
text directly on the screen. The easiest and most efficient way to draw simple strings is using the UIKit
additions to the NSString class. These extensions include methods for drawing strings using a variety of
attributes wherever you want them on the screen. There are also methods for computing the size of a rendered
string before you actually draw it, which can help you lay out your application content more precisely.

Important: Because of the performance implications, you should avoid drawing text directly whenever
possible. Static text can be drawn much more efficiently using one or more UILabel objects than it can be
using a custom drawing routine. Similarly, the UITextField class includes different styles that make it easier
to integrate editable text areas into your content.

When you need to draw custom text strings in your interface, use the methods of NSString to do so. UIKit
includes extensions to the basic NSString class that allow you to draw strings in your views. These methods
allow you to adjust the position of the rendered text precisely and blend it with the rest of your view’s content.
The methods of this class also let you compute the bounding rectangle for your text in advance based on
the desired font and style attributes. For information, see NSString UIKit Additions Reference.

If you need more control over the fonts you plan to use during drawing, you can also use the functions of
the Core Graphics framework to do your drawing. The Core Graphics frameworks provides methods for the
precise drawing and placement of glyphs and text. For more information about these functions and their
use, see Quartz 2D Programming Guide and Core Graphics Framework Reference.

Drawing Text 115
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

116 Drawing Text
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Text and Web

An application running in iPhone OS has access to the local file system and network, which you can access
using assorted Core OS and Core Services frameworks. Being able to read and write files in the local file
system lets you save user data and application state for subsequent uses. Accessing the network gives you
the ability to communicate with network servers to perform remote operations and send and retrieve data.

File and Data Management

Files in iPhone OS share space with the user’s media and personal files on the flash-based memory. For
security purposes, your application is placed in its own directory and is limited to reading and writing files
in that directory only. The following sections describe the structure of an application’s local file system and
several techniques for reading and writing files.

Commonly Used Directories

For security purposes, an application has only a few locations in which it can write its data and preferences.
When an application is installed on a device, a home directory is created for the application. Table 6-1 lists
some of the important subdirectories inside the home directory that you might need to access. This table
describes the intended usage and access restrictions for each directory and whether the directory’s contents
are backed up by iTunes. For more information about the backup and restore process, see “Backup and
Restore” (page 118). For more information about the application home directory itself, see “The Application
Sandbox” (page 21).

Table 6-1 Directories of an iPhone application

DescriptionDirectory

This is the bundle directory containing the application
itself. Because an application must be signed, you must
not make changes to the contents of this directory at
runtime. Doing so may prevent your application from
launching later.

In iPhone OS 2.1 and later, the contents of this directory
are not backed up by iTunes. However, iTunes does
perform an initial sync of any applications purchased
from the App Store.

<Application_Home>/AppName.app

File and Data Management 117
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

DescriptionDirectory

This is the directory you should use to write any
application-specific data files. Use this directory to store
user data or other information that should be backed up
regularly. For information about how to get the path of
this directory, see “Getting Paths to Application
Directories” (page 119).

The contents of this directory are backed up by iTunes.

<Application_Home>/Documents/

This directory contains application-specific preference
files. You should not create preferences files directly but
should instead use the NSUserDefaults class or
CFPreferences API to get and set application preferences;
see “Adding the Settings Bundle” (page 156).

The contents of this directory are backed up by iTunes.

<Application_Home>/Library/Preferences

Use this directory to write any application-specific support
files that you want to persist between launches of the
application. Your application is generally responsible for
adding and removing these files. However, iTunes
removes these files during a full restore of the device so
you should be able to recreate them as needed. To access
this directory, use the interfaces described in “Getting
Paths to Application Directories” (page 119) to get the
path to the directory.

In iPhone OS 2.2 and later, the contents of this directory
are not backed up by iTunes.

<Application_Home>/Library/Caches

Use this directory to write temporary files that you do
not need to persist between launches of your application.
Your application should remove files from this directory
when it determines they are no longer needed. (The
system may also purge lingering files from this directory
when your application is not running.) For information
about how to get the path of this directory, see “Getting
Paths to Application Directories” (page 119).

In iPhone OS 2.1 and later, the contents of this directory
are not backed up by iTunes.

<Application_Home>/tmp/

Backup and Restore

You do not have to prepare your application in any way for backup and restore operations. In iPhone OS 2.2
and later, when a device is plugged into a computer and synced, iTunes performs an incremental backup of
all files, except for those in the following directories:

 ■ <Application_Home>/AppName.app

 ■ <Application_Home>/Library/Caches

 ■ <Application_Home>/tmp

118 File and Data Management
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

Although iTunes does backup the application bundle itself, it does not do this during every sync operation.
Applications purchased from the App Store on the device are backed up when that device is next synced
with iTunes. Applications are not backed up during subsequent sync operations though unless the application
bundle itself has changed (because the application was updated, for example).

To prevent the syncing process from taking a long time, you should be selective about where you place files
inside your application’s home directory. The <Application_Home>/Documents directory should be used to
store user data files or files that cannot be easily recreated by your application. Files used to store temporary
data should be placed inside the ApplicationHome/tmp directory and deleted by your application when they
are no longer needed. If your application creates data files that can be used during subsequent launches, it
should place those files in the Application Home/Library/Caches directory.

Note: If your application creates large data files, or files that change frequently, you should consider storing
them in the ApplicationHome/Library/Caches directory and not in the <Application_Home>/Documents
directory. Backing up large data files can slow down the backup process significantly. The same is true for
files that change regularly (and therefore must be backed up frequently). Placing these files in the Caches
directory prevents them from being backed up (in iPhone OS 2.2 and later) during every sync operation.

For additional guidance about how you should use the directories in your application, see Table 6-1 (page
117).

Getting Paths to Application Directories

At various levels of the system, there are programmatic ways to obtain file-system paths to the directory
locations of an application’s sandbox. However, the preferred way to retrieve these paths is with the Cocoa
programming interfaces. The NSHomeDirectory function (in the Foundation framework) returns the path
to the top-level home directory—that is, the directory containing the application, Documents, Library,
and tmp directories. In addition to that function, you can also use the
NSSearchPathForDirectoriesInDomains and NSTemporaryDirectory functions to get exact paths
to your Documents, Caches, and tmp directories.

Both the NSHomeDirectory and NSTemporaryDirectory functions return the properly formatted path
information in an NSString object. You can use the path-related methods of NSString to modify the path
information or create new path strings. For example, upon retrieving the temporary directory path, you could
append a file name and use the resulting string to create a file with the given name in the temporary directory.

Note: If you are using frameworks with ANSI C programmatic interfaces—including those that take
paths—recall that NSString objects are “toll-free bridged” with their Core Foundation counterparts. This
means that you can cast a NSString object (such as the return by one of the above functions) to a
CFStringRef type, as shown in the following example:

CFStringRef homeDir = (CFStringRef)NSHomeDirectory();

For more information on toll-free bridging, see Carbon-Cocoa Integration Guide.

The NSSearchPathForDirectoriesInDomains function of the Foundation framework lets you obtain the
full path to several application-related directories. To use this function in iPhone OS, specify an appropriate
search path constant for the first parameter and NSUserDomainMask for the second parameter. Table 6-2
lists several of the most commonly used constants and the directories they return.

File and Data Management 119
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

Table 6-2 Commonly used search path constants

DirectoryConstant

<Application_Home>/DocumentsNSDocumentDirectory

<Application_Home>/Library/CachesNSCachesDirectory

<Application_Home>/Library/Application SupportNSApplicationSupportDirectory

Because the NSSearchPathForDirectoriesInDomains function was designed originally for Mac OS X,
where multiple such directories could exist, it returns an array of paths rather than a single path. In iPhone
OS, the resulting array should contain the single path to the desired directory. Listing 6-1 shows a typical use
of this function.

Listing 6-1 Getting a file-system path to the application’s Documents/ directory

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];

You can call NSSearchPathForDirectoriesInDomains using a domain-mask parameter other than
NSUserDomainMask or a directory constant other than those in Table 6-2 (page 120), but the application will
be unable to write to any of the returned directory locations. For example, if you specify
NSApplicationDirectory as the directory parameter and NSSystemDomainMask as the domain-mask
parameter, you get the path /Applications returned (on the device), but your application cannot write
any files to this location.

Another consideration to keep in mind is the difference in directory locations between platforms. The paths
returned by NSSearchPathForDirectoriesInDomains, NSHomeDirectory, NSTemporaryDirectory,
and similar functions differ depending on whether you’re running your application on the device or on the
Simulator. For example, take the function call shown in Listing 6-1 (page 120). On the device, the returned
path (documentsDirectory) is similar to the following:

/var/mobile/Applications/30B51836-D2DD-43AA-BCB4-9D4DADFED6A2/Documents

However, on the Simulator, the returned path takes the following form:

/Volumes/Stuff/Users/johnDoe/Library/Application Support/iPhone
Simulator/User/Applications/118086A0-FAAF-4CD4-9A0F-CD5E8D287270/Documents

To read and write user preferences, use the NSUserDefaults class or the CFPreferences API. These
interfaces eliminate the need for you to construct a path to the Library/Preferences/ directory and read
and write preference files directly. For more information on using these interfaces, see “Adding the Settings
Bundle” (page 156).

If your application contains sound, image, or other resources in the application bundle, you should use the
NSBundle class or CFBundle opaque type to load those resources. Bundles have an inherent knowledge of
where resources live inside the application. In addition, bundles are aware of the user’s language preferences
and are able to choose localized resources over default resources automatically. For more information on
bundles, see “The Application Bundle” (page 23).

120 File and Data Management
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

Reading and Writing File Data

The iPhone OS provides several ways to read, write, and manage files.

 ■ Foundation framework:

 ❏ If you can represent your application’s data as a property list, convert the property list to an NSData
object using the NSPropertyListSerialization API. You can then write the data object to disk
using the methods of the NSData class.

 ❏ If your application’s model objects adopt the NSCoding protocol, you can archive a graph of these
model objects using the NSKeyedArchiver class, and especially its
archivedDataWithRootObject: method.

 ❏ The NSFileHandle class in Foundation framework provides random access to the contents of a
file.

 ❏ The NSFileManager class in Foundation framework provides methods to create and manipulate
files in the file system.

 ■ Core OS calls:

 ❏ Calls such as fopen, fread, and fwrite also let you read and write file data either sequentially or
via random access.

 ❏ The mmap and munmap calls provide an efficient way to load large files into memory and access their
contents.

Note: The preceding list of Core OS calls is just a sample of the more commonly used calls. For a more
complete list of the available functions, see the list of functions in section 3 of iPhone OS Manual Pages.

The following sections show examples of how to use some of the higher-level techniques for reading and
writing files. For additional information about the file-related classes of the Foundation framework, see
Foundation Framework Reference.

Reading and Writing Property List Data

A property list is a form of data representation that encapsulates several Foundation (and Core Foundation)
data types, including dictionaries, arrays, strings, dates, binary data, and numerical and Boolean values.
Property lists are commonly used to store structured configuration data. For example, the Info.plist file found
in every Cocoa and iPhone applications is a property list that stores configuration information about the
application itself. You can use property lists yourself to store additional information, such as the state of your
application when it quits.

In code, you typically construct a property list starting with either a dictionary or array as a container object.
You then add other property-list objects, including (possibly) other dictionaries and arrays. The keys of
dictionaries must be string objects. The values for those keys are instances of NSDictionary, NSArray,
NSString, NSDate, NSData, and NSNumber.

File and Data Management 121
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

For an application whose data can be represented by a property-list object (such as an NSDictionary
object), you could write that property list to disk using a method such as the one shown in Listing 6-2. This
method serializes the property list object into an NSData object, then calls the
writeApplicationData:toFile: method (the implementation for which is shown in Listing 6-4 (page
123)) to write that data to disk.

Listing 6-2 Converting a property-list object to an NSData object and writing it to storage

- (BOOL)writeApplicationPlist:(id)plist toFile:(NSString *)fileName {
 NSString *error;
 NSData *pData = [NSPropertyListSerialization dataFromPropertyList:plist
format:NSPropertyListBinaryFormat_v1_0 errorDescription:&error];
 if (!pData) {
 NSLog(@"%@", error);
 return NO;
 }
 return ([self writeApplicationData:pData toFile:(NSString *)fileName]);
}

When writing property list files in iPhone OS, it is important to store your files in binary format. You do this
by specifying the NSPropertyListBinaryFormat_v1_0 key in the format parameter of the
dataFromPropertyList:format:errorDescription:method. The binary property-list format is much
more compact than the other format options, which are text based. This compactness not only minimizes
the amount of space taken up on the user’s device, it also improves the time it takes to read and write the
property list.

Listing 6-3 shows the corresponding code for loading a property-list file from disk and reconstituting the
objects in that property list.

Listing 6-3 Reading a property-list object from the application’s Documents directory

- (id)applicationPlistFromFile:(NSString *)fileName {
 NSData *retData;
 NSString *error;
 id retPlist;
 NSPropertyListFormat format;

 retData = [self applicationDataFromFile:fileName];
 if (!retData) {
 NSLog(@"Data file not returned.");
 return nil;
 }
 retPlist = [NSPropertyListSerialization propertyListFromData:retData
mutabilityOption:NSPropertyListImmutable format:&format errorDescription:&error];
 if (!retPlist){
 NSLog(@"Plist not returned, error: %@", error);
 }
 return retPlist;
}

For more on property lists and the NSPropertyListSerialization class, see Property List Programming
Guide.

122 File and Data Management
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

Using Archivers to Read and Write Data

An archiver converts an arbitrary collection of objects into a stream of bytes. Although this may sound similar
to the process employed by the NSPropertyListSerialization class, there is an important difference.
A property-list serializer can convert only a limited set of (mostly scalar) data types. Archivers can convert
arbitrary Objective-C objects, scalar types, arrays, structures, strings, and more.

The key to the archiving process is in the target objects themselves. The objects manipulated by an archiver
must conform to the NSCoding protocol, which defines the interface for reading and writing the object’s
state. When an archiver encodes a set of objects, it sends an encodeWithCoder: message to each one,
which the object then uses to write out its critical state information to the corresponding archive. The
unarchiving process reverses the flow of information. During unarchiving, each object receives an
initWithCoder:message, which it uses to initialize itself with the state information currently in the archive.
Upon completion of the unarchiving process, the stream of bytes is reconstituted into a new set of objects
that have the same state as the ones written to the archive previously.

The Foundation framework supports two kinds of archivers—sequential and keyed. Keyed archivers are more
flexible and are recommended for use in your application. The following example shows how to archive a
graph of objects using a keyed archiver. The representationmethod of the _myDataSource object returns
a single object (possibly an array or dictionary) that points to all of the objects to be included in the archive.
The data object is then written to a file whose path is specified by the myFilePath variable.

NSData *data = [NSKeyedArchiver archivedDataWithRootObject:[_myDataSource
representation]];
[data writeToFile:myFilePath atomically:YES];

Note: You could also send a archiveRootObject:toFile: message to the NSKeyedArchiver object to
create the archive and write it to storage in one step.

To load the contents of an archive from disk, you simply reverse the process. After loading the data from
disk, you use the NSKeyedUnarchiver class and its unarchiveObjectWithData: class method to get
back the model-object graph. For example, to unarchive the data from the previous example, you could use
the following code:

NSData* data = [NSData dataWithContentsOfFile:myFilePath];
id rootObject = [NSKeyedUnarchiver unarchiveObjectWithData:data];

For more information on how to use archivers and how to make your objects support the NSCoding protocol,
see Archives and Serializations Programming Guide for Cocoa.

Writing Data to Your Documents Directory

After you have an NSData object encapsulating the application data (either as an archive or a serialized
property list), you can call the method shown in Listing 6-4 to write that data to the application Documents
directory.

Listing 6-4 Writing data to the application’s Documents directory

- (BOOL)writeApplicationData:(NSData *)data toFile:(NSString *)fileName {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 if (!documentsDirectory) {

File and Data Management 123
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

 NSLog(@"Documents directory not found!");
 return NO;
 }
 NSString *appFile = [documentsDirectory
stringByAppendingPathComponent:fileName];
 return ([data writeToFile:appFile atomically:YES]);
}

Reading Data from the Documents Directory

To read a file from your application’s Documents directory, construct the path for the file name and use the
desired method to read the file contents into memory. For relatively small files—that is, files less than a few
memory pages in size—you could use the code in Listing 6-5 to obtain a data object for the file contents.
This example constructs a full path to the file in the Documents directory, creates a data object from it, and
then returns that object.

Listing 6-5 Reading data from the application’s Documents directory

- (NSData *)applicationDataFromFile:(NSString *)fileName {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *appFile = [documentsDirectory
stringByAppendingPathComponent:fileName];
 NSData *myData = [[[NSData alloc] initWithContentsOfFile:appFile]
autorelease];
 return myData;
}

For files that would require multiple memory pages to hold in memory, you should avoid loading the entire
file all at once. This is especially important if you plan to use only part of the file. For larger files, you should
consider mapping the file into memory using either the mmap function or the
initWithContentsOfMappedFile: method of NSData.

Choosing when to map files versus load them directly is up to you. It is relatively safe to load a file entirely
into memory if it requires only a few (3-4) memory pages. If your file requires several dozen or a hundred
pages, however, you would probably find it more efficient to map the file into memory. As with any such
determination, though, you should measure your application’s performance and determine how long it takes
to load the file and allocate the necessary memory.

File Access Guidelines

When creating files or writing out file data, keep the following guidelines in mind:

 ■ Minimize the amount of data you write to the disk. File operations are relatively slow and involve writing
to the Flash disk, which has a limited lifespan. Some specific tips to help you minimize file-related
operations include:

 ❏ Write only the portions of the file that changed, but aggregate changes when you can. Avoid writing
out the entire file just to change a few bytes.

 ❏ When defining your file format, group frequently modified content together so as to minimize the
overall number of blocks that need to be written to disk each time.

124 File and Data Management
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

 ❏ If your data consists of structured content that is randomly accessed, store it in a SQLite database.
This is especially important if the amount of data you are manipulating could grow to be more than
a few megabytes in size.

 ■ Avoid writing cache files to disk. The only exception to this rule is when your application quits and you
need to write state information that can be used to put your application back into the same state when
it is next launched.

Saving State Information

When the user presses the Home button, iPhone OS quits your application and returns to the Home screen.
Similarly, if your application opens a URI whose scheme is handled by a different application, iPhone OS quits
your application and opens the URI in the other application. In other words, any action that would cause
your application to suspend or go to the background in Mac OS X causes your application to quit in iPhone
OS. Because these actions happen regularly on mobile devices, your application must change the way it
manages volatile data and application state.

Unlike most desktop applications, where the user manually chooses when to save files to disk, your application
should save changes automatically at key points in your workflow. Exactly when you save data is up to you,
but there are two potential options. Either you can save each change immediately as the user makes it, or
you can batch changes on the same page together and save them when the page is dismissed, a new page
is displayed, or the application quits. Under no circumstances should you let the user navigate to a new page
of content without saving the data on the previous page.

When your application is asked to quit, you should save the current state of your application to a temporary
cache file or to the preferences database. The next time the user launches your application, use that information
to restore your application to its previous state. The state information you save should be as minimal as
possible but still let you accurately restore your application to an appropriate point. You do not have to
display the exact same screen the user was manipulating previously if doing so would not make sense. For
example, if a user edits a contact and then leaves the Phone application, upon returning, the Phone application
displays the top-level list of contacts, rather than the editing screen for the contact.

Case Sensitivity

The file system for iPhone OS–based devices is case sensitive. Whenever you work with filenames, you should
be sure that the case matches exactly or your code may be unable to open or access the file.

Networking

The networking stack in iPhone OS includes several interfaces over the radio hardware of iPhone and iPod
touch devices. The main programming interface is the CFNetwork framework, which builds on top of BSD
sockets and opaque types in the Core Foundation framework to communicate with network entities. You
can also use the NSStream classes in the Foundation framework and the low-level BSD sockets found in the
Core OS layer of the system.

Networking 125
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

The following sections provide iPhone-specific tips for developers who need to incorporate networking
features into their applications. For information about how to use the CFNetwork framework for network
communication, see CFNetwork Programming Guide and CFNetwork Framework Reference. For information
about using the NSStream class, see Foundation Framework Reference.

Tips for Efficient Networking

When implementing code to receive or transmit across the network, remember that doing so is one of the
most power-intensive operations on a device. Minimizing the amount of time spent transmitting or receiving
helps improve battery life. To that end, you should consider the following tips when writing your
network-related code:

 ■ For protocols you control, define your data formats to be as compact as possible.

 ■ Avoid communicating using chatty protocols.

 ■ Transmit data packets in bursts whenever you can.

The cellular and Wi-Fi radios are designed to power down when there is no activity. Doing so can take several
seconds though, depending on the radio. If your application transmits small bursts of data every few seconds,
the radios may stay powered up and continue to consume power, even when they are not actually doing
anything. Rather than transmit small amounts of data more often, it is better to transmit a larger amount of
data once or at relatively large intervals.

When communicating over the network, it is also important to remember that packets can be lost at any
time. When writing your networking code, you should be sure to make it as robust as possible when it comes
to failure handling. It is perfectly reasonable to implement handlers that respond to changes in network
conditions, but do not be surprised if those handlers are not called consistently. For example, the Bonjour
networking callbacks may not always be called immediately in response to the disappearance of a network
service. The Bonjour system service does immediately invoke browsing callbacks when it receives a notification
that a service is going away, but network services can disappear without notification. This might occur if the
device providing the network service unexpectedly loses network connectivity or the notification is lost in
transit.

Using Wi-Fi

If your application accesses the network using the Wi-Fi radios, you must notify the system of that fact by
including the UIRequiresPersistentWiFi key in the application’s Info.plist file. The inclusion of this
key lets the system know that it should display the network selection panel if it detects any active Wi-Fi hot
spots. It also lets the system know that it should not attempt to shut down the Wi-Fi hardware while your
application is running.

To prevent the Wi-Fi hardware from using too much power, iPhone OS has a built-in timer that turns off the
hardware completely after 30 minutes if no application has requested its use through the
UIRequiresPersistentWiFi key. If the user launches an application that includes the key, iPhone OS
effectively disables the timer for the duration of the application’s life cycle. As soon as that application quits,
however, the system reenables the timer.

For more information on the UIRequiresPersistentWiFi key and the keys of the Info.plist file, see
“The Information Property List” (page 25).

126 Networking
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Files and Networking

iPhone OS supports audio features in your application through the Core Audio and OpenAL frameworks, and
provides video playback support using the Media Player framework. Core Audio provides an advanced
interface for playing, recording, and manipulating sound and for parsing streamed audio. If you are a game
developer and already have code that takes advantage of OpenAL, you can use your code in iPhone OS.

Using Sound in iPhone OS

Core Audio offers a rich set of tools for working with sound in your application. These tools are arranged into
four frameworks:

 ■ The Audio Toolbox framework, for recording and playing audio, parsing audio streams, and converting
audio formats.

 ■ The Audio Unit framework, for using audio processing plug-ins.

 ■ The AV Foundation framework, for playing audio using a simple Objective-C interface.

 ■ The Core Audio framework (not an umbrella framework), which provides data types used by all Core
Audio services.

In addition to Core Audio, you can use the OpenAL framework in iPhone OS for positional audio playback.
OpenAL 1.1 support in iPhone OS is built on top of Core Audio.

You select among the various iPhone audio APIs based on the needs of your application. The following list
lets you zoom in on the audio technologies to use:

 ■ To play alerts and user-interface sound effects, or to invoke vibration on devices that provide that feature,
use System Sound Services. See “Playing Short Sounds or Invoking Vibration Using System Sound
Services” (page 131).

 ■ To play sounds in the fewest lines of code, use the AVAudioPlayer class. See “Playing Sounds Easily
with the AVAudioPlayer Class” (page 133).

 ■ To provide full-featured audio playback including stereo positioning, level control, and simultaneous
sounds, use OpenAL. See “Playing Sounds with Positioning Using OpenAL” (page 137).

 ■ To provide lowest latency audio, especially when doing simultaneous input and output (such as for a
VOIP application), use the I/O audio unit. See “Audio Unit Support in iPhone OS” (page 139).

 ■ To play sounds with the highest degree of control, including support for synchronization, use Audio
Queue Services. See “Playing Sounds with Control Using Audio Queue Services” (page 134).

 ■ To record audio, use Audio Queue Services. See “Recording Audio” (page 137).

 ■ To parse audio streamed from a network connection, use Audio File Stream Services. See “Parsing
Streamed Audio” (page 138).

Using Sound in iPhone OS 127
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

Be sure to read the next section, “The Basics: Hardware Codecs, Audio Formats, and Audio Sessions” (page
128), for critical information on how audio works on an iPhone OS-based device. Also read “Best Practices for
iPhone Audio” (page 139), which offers guidelines and lists the audio and file formats to use for best
performance and best user experience.

When you’re ready to dig deeper, the iPhone Dev Center contains guides, reference books, sample code,
and more. For tips on how to perform common audio tasks, see Audio & Video Coding How-To's. For in-depth
explanations of audio development in iPhone OS, see CoreAudioOverview, AudioQueue Services Programming
Guide, and Audio Session Programming Guide.

The Basics: Hardware Codecs, Audio Formats, and Audio Sessions

To get oriented toward iPhone audio development, it’s helpful to understand a few things about the hardware
and software architecture of iPhone OS-based devices.

iPhone Audio Hardware Codecs

iPhone OS applications can use a wide range of audio data formats, as described in the next section. Some
of these formats use software-based encoding and decoding. You can simultaneously play multiple sounds
in these formats. Moreover, your application and a background application (notably, the iPod application)
can simultaneously play sounds in these formats.

Other iPhone OS audio formats employ a hardware codec for playback. These formats are:

 ■ AAC

 ■ ALAC (Apple Lossless)

 ■ MP3

The device can play only a single instance of one of these formats at a time. For example, if you are playing
a stereo MP3 sound, you cannot simultaneously play another, nor can you simultaneously play an AAC or an
ALAC sound. If the iPod application is playing an MP3 sound in the background, your application is unable
to play AAC, ALAC, or MP3 audio.

To play multiple, high-quality sounds, or to play sounds while the iPod is playing in the background, use
linear PCM (uncompressed) or IMA4 (compressed) audio.

Audio Playback and Recording Formats

Here are the audio playback formats supported in iPhone OS:

 ■ AAC

 ■ AMR (Adaptive Multi-Rate, a format for speech)

 ■ ALAC (Apple Lossless)

 ■ iLBC (internet Low Bitrate Codec, another format for speech)

 ■ IMA4 (IMA/ADPCM)

 ■ linear PCM (uncompressed)

 ■ µ-law and a-law

128 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

 ■ MP3 (MPEG-1 audio layer 3

Here are the audio recording formats supported in iPhone OS:

 ■ ALAC (Apple Lossless)

 ■ iLBC (internet Low Bitrate Codec, for speech)

 ■ IMA/ADPCM (IMA4)

 ■ linear PCM

 ■ µ-law and a-law

The following list summarizes how iPhone OS supports audio formats for single or multiple playback:

 ■ Linear PCM and IMA4 (IMA/ADPCM) You can play multiple linear PCM or IMA4 format sounds
simultaneously in iPhone OS without incurring CPU resource problems. The same is true for the AMR
and iLBC speech-quality formats, and for the µ-law and a-law compressed formats.

 ■ AAC, MP3, and ALAC (Apple Lossless) Playback for AAC, MP3, and ALAC sounds uses efficient
hardware-based decoding on iPhone OS–based devices, but these codecs all share a single hardware
path. The device can play only a single instance of one of these formats at a time.

The single hardware path for AAC, MP3, and ALAC audio entails implications for "play along” style applications,
such as a virtual piano. If the user is playing a sound in one of these three formats in the iPod application,
then your application—to play along over that audio—must use one of the software-decoded formats: linear
PCM, IMA4, AMR, iLBC, µ-law, or a-law.

Audio Sessions

Core Audio’s audio session interface (declared in AudioToolbox/AudioServices.h) lets your application
define an audio context for itself and to work well within the larger audio context of the device it’s running
on.

Your context includes such things as whether you want your audio to be silenced by the Ring/Silent switch
and whether you want iPod audio to continue playing when your audio starts. The larger audio context
includes changes made by users—such as when they plug in headsets. It also includes events such as incoming
phone calls.

Each iPhone OS application gets a singleton audio session object, usually called an audio session. This object
comes with some default behavior that you can use to get started in development. Except for certain special
cases, however, the default behavior is unsuitable for a shipping application. By configuring and using the
audio session, you can express your audio intentions and respond to OS-level audio decisions.

Audio Session Services provides three programmatic features, described in Table 7-1.

Table 7-1 Features provided by the audio session interface

DescriptionAudio session feature

A category is a key that identifies a set of audio behaviors for your application.
By setting a category, you indicate your audio intentions to iPhone OS, such
as whether your audio should continue when the screen locks.

Categories

Using Sound in iPhone OS 129
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

DescriptionAudio session feature

Your audio session posts notifications when your audio is interrupted, when
an interruption ends, and when the hardware audio route changes. These
notifications let you respond to changes in the larger audio environment—such
as an interruption due to in an incoming phone call—gracefully.

Interruptions and route
changes

You can query the audio session to discover characteristics of the device your
application is running on, such as hardware sample rate, number of hardware
channels, and whether audio input is available.

Hardware characteristics

When using the default audio session, audio in your application stops when the Auto-Lock period times out
and the screen locks. If you want to ensure that playback continues with the screen locked, you perform the
following steps:

1. In your application’s initialization code, initialize your audio session as shown in Listing 7-1. Your audio
session must be initialized before you can assign a category to it, which you do in the next step.

Listing 7-1 Initializing an audio session

AudioSessionInitialize (
 NULL, // uses the default run loop
 NULL, // uses the default run loop mode
 interruptionCallback, // your callback function (can be set to NULL)
 userData // data you want sent to your callback
);

(This function uses the interruptionCallback parameter to register your interruption listener callback
function. You can (at your option) provide that callback to specify how your application behaves when
an audio interruption starts or ends. That callback is not involved with setting the category for your audio
session, and does not affect screen-locking behavior.)

2. Before starting playback, you set your audio session’s category to
kAudioSessionCategory_MediaPlayback, as shown in Listing 7-2. Among other things, this category
indicates that you intend for your audio to continue on screen lock or when the Ring/Silent switch is set
to silent.

Listing 7-2 Setting an audio session category

UInt32 sessionCategory = kAudioSessionCategory_MediaPlayback;

AudioSessionSetProperty (
 kAudioSessionProperty_AudioCategory,
 sizeof (sessionCategory),
 &sessionCategory
);

For detailed information on categories, see Audio Session Categories in Audio Session ProgrammingGuide.

How you handle the interruption caused by an incoming phone call depends on the audio technology you
are using in your application, as shown in Table 7-2.

130 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

Table 7-2 Handling audio interruptions

How interruptions workAudio technology

System sounds and alerts go silent when an interruption starts. They can
automatically be used again if the interruption ends—which happens if a user
elects to ignore an incoming phone call. Applications cannot influence the
interruption behavior for sounds that use this technology.

System Sound Services

These technologies provide the greatest flexibility, putting you in control of
handling interruptions. You write an interruption listener callback function, as
explained in “Responding to Audio Interruptions” in Audio Session Programming
Guide.

Audio Queue Services,
OpenAL, I/O audio unit

The AVAudioPlayer class provides delegate methods for interruption start and
end. You can implement the audioPlayerBeginInterruption: method, as
appropriate, to update your user interface. The audio player object takes care
of pausing playback and saving state. You can use the audioPlayerEnd-
Interruption: method to resume playback and, as appropriate, update your
user interface. The audio player takes care of reactivating your audio session.

AVAudioPlayer class

Every iPhone OS application—with rare exception—should adopt Audio Session Services. To learn how, read
Audio Session Programming Guide.

Playing Audio

This section introduces you to playing sounds in iPhone OS using System Sound Services, Audio Queue
Services, the AVAudioPlayer class, and OpenAL.

Playing Short Sounds or Invoking Vibration Using System Sound Services

To play user-interface sound effects (such as button clicks) or alert sounds, or to invoke vibration on devices
that support it, use System Sound Services. This compact interface is described in System Sound Services
Reference. You can find sample code in the SysSound sample in the iPhone Dev Center.

Note: Sounds played with System Sound Services are not subject to configuration using your audio session.
As a result, you cannot keep the behavior of System Sound Services audio in line with other audio behavior
in your application. This is the most important reason to avoid using System Sound Services for any audio
apart from its intended uses.

The AudioServicesPlaySystemSound function lets you very simply play short sound files. The simplicity
carries with it a few restrictions. Your sound files must be:

 ■ Shorter than 30 seconds in duration

 ■ In linear PCM or IMA4 (IMA/ADPCM) format

 ■ Packaged in a .caf, .aif, or .wav file

In addition, when you use the AudioServicesPlaySystemSound function:

Using Sound in iPhone OS 131
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

http://developer.apple.com/iphone/

 ■ Sounds play at the current system audio level, with no level control available

 ■ Sounds play immediately

 ■ Looping and stereo positioning are unavailable

The similar AudioServicesPlayAlertSound function plays a short sound as an alert. If a user has configured
their device to vibrate in Ring Settings, calling this function invokes vibration in addition to playing the sound
file.

Note: System-supplied alert sounds and system-supplied user-interface sound effects are not available to
your application. For example, using the kSystemSoundID_UserPreferredAlert constant as a parameter
to the AudioServicesPlayAlertSound function will not play anything.

To play a sound with the AudioServicesPlaySystemSound or AudioServicesPlayAlertSound function,
you first create a sound ID object, as shown in Listing 7-3.

Listing 7-3 Creating a sound ID object

 // Get the main bundle for the app
 CFBundleRef mainBundle = CFBundleGetMainBundle ();

 // Get the URL to the sound file to play. The file in this case
 // is "tap.aiff"
 soundFileURLRef = CFBundleCopyResourceURL (
 mainBundle,
 CFSTR ("tap"),
 CFSTR ("aif"),
 NULL
);

 // Create a system sound object representing the sound file
 AudioServicesCreateSystemSoundID (
 soundFileURLRef,
 &soundFileObject
);

You can then play the sound, as shown in Listing 7-4.

Listing 7-4 Playing a system sound

- (IBAction) playSystemSound {
 AudioServicesPlaySystemSound (self.soundFileObject);
}

In typical use, which includes playing a sound occasionally or repeatedly, retain the sound ID object until
your application quits. If you know that you will use a sound only once—for example, in the case of a startup
sound—you can destroy the sound ID object immediately after playing the sound, freeing memory.

Applications running on iPhone OS–based devices that support vibration can trigger that feature using
System Sound Services. You specify the vibrate option with the kSystemSoundID_Vibrate identifier. To
trigger it, use the AudioServicesPlaySystemSound function, as shown in Listing 7-5.

132 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

Listing 7-5 Triggering vibration

#import <AudioToolbox/AudioToolbox.h>
#import <UIKit/UIKit.h>
- (void) vibratePhone {
 AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);
}

If your application is running on an iPod touch, this code does nothing.

Playing Sounds Easily with the AVAudioPlayer Class

The AVAudioPlayer class provides a simple Objective-C interface for playing sounds. If your application
does not require stereo positioning or precise synchronization, and if you are not playing audio captured
from a network stream, Apple recommends that you use this class for playback.

Using an audio player you can:

 ■ Play sounds of any duration

 ■ Play sounds from files or memory buffers

 ■ Loop sounds

 ■ Play multiple sounds simultaneously

 ■ Control relative playback level for each sound you are playing

 ■ Seek to a particular point in a sound file, which supports such application features as fast forward and
rewind

 ■ Obtain audio power data that you can use for audio level metering

The AVAudioPlayer class lets you play sound in any audio format available in iPhone OS, as described in
“Audio Playback and Recording Formats” (page 128). For a complete description of this class’s interface, see
AVAudioPlayer Class Reference.

To configure an audio player for playback, you assign a sound file to it, prepare it to play, and designate a
delegate object. The code in Listing 7-6 would typically go into an initialization method of the controller
class for your application.

Listing 7-6 Configuring an AVAudioPlayer object

NSString *soundFilePath =
 [[NSBundle mainBundle] pathForResource: @"sound"
 ofType: @"wav"];

NSURL *fileURL = [[NSURL alloc] initFileURLWithPath: soundFilePath];

AVAudioPlayer *newPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL: fileURL
 error: nil];
[fileURL release];

self.player = newPlayer;
[newPlayer release];

[self.player prepareToPlay];

Using Sound in iPhone OS 133
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

[self.player setDelegate: self];

You use a delegate object (which can be your controller object) to handle interruptions and to update the
user interface when a sound has finished playing. The delegate methods for the AVAudioPlayer class are
described in AVAudioPlayerDelegate Protocol Reference. Listing 7-7 shows a simple implementation of one
delegate method. This code updates the title of a Play/Pause toggle button when a sound has finished
playing.

Listing 7-7 Implementing an AVAudioPlayer delegate method

- (void) audioPlayerDidFinishPlaying: (AVAudioPlayer *) player
 successfully: (BOOL) flag {
 if (flag == YES) {
 [self.button setTitle: @"Play" forState: UIControlStateNormal];
 }
}

To play, pause, or stop an AVAudioPlayer object, call one of its playback control methods. You can test
whether or not playback is in progress by using the playing property. Listing 7-8 shows a basic play/pause
toggle method that controls playback and updates the title of a UIButton object.

Listing 7-8 Controlling an AVAudioPlayer object

- (IBAction) playOrPause: (id) sender {

 // if already playing, then pause
 if (self.player.playing) {
 [self.button setTitle: @"Play" forState: UIControlStateHighlighted];
 [self.button setTitle: @"Play" forState: UIControlStateNormal];
 [self.player pause];

 // if stopped or paused, start playing
 } else {
 [self.button setTitle: @"Pause" forState: UIControlStateHighlighted];
 [self.button setTitle: @"Pause" forState: UIControlStateNormal];
 [self.player play];
 }
}

The AVAudioPlayer class uses the Objective-C declared properties feature for managing information about
a sound—such as the playback point within the sound’s timeline, and for accessing playback options—such
as volume and looping. For example, you set the playback volume for an audio player as shown here:

[self.player setVolume: 1.0]; // available range is 0.0 through 1.0

For more information on the AVAudioPlayer class, see AVAudioPlayer Class Reference.

Playing Sounds with Control Using Audio Queue Services

Audio Queue Services adds playback capabilities beyond those available with the AVAudioPlayer class.
Using Audio Queue Services for playback lets you:

 ■ Precisely schedule when a sound plays, allowing synchronization

 ■ Precisely control volume—on a buffer-by-buffer basis

 ■ Play audio that you have captured from a stream using Audio File Stream Services

134 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

Audio Queue Services lets you play sound in any audio format available in iPhone OS, as described in “Audio
Playback and Recording Formats” (page 128). You also use this technology for recording, as explained in
“Recording Audio” (page 137).

For detailed information on using this technology, see Audio Queue Services Programming Guide and Audio
Queue Services Reference. For sample code, see the SpeakHere sample in the iPhone Dev Center. (For a Mac
OS X implementation, see the AudioQueueTools project available in the Core Audio SDK. When you install
Xcode tools in Mac OS X, the AudioQueueTools project is available at
/Developer/Examples/CoreAudio/SimpleSDK/AudioQueueTools.)

Creating an Audio Queue Object

To create an audio queue object for playback, perform these three steps:

1. Create a data structure to manage information needed by the audio queue, such as the audio format
for the data you want to play.

2. Define a callback function for managing audio queue buffers. The callback uses Audio File Services to
read the file you want to play. (In iPhone OS 2.1 and later, you can also use Extended Audio File Services
to read the file.)

3. Instantiate the playback audio queue using the AudioQueueNewOutput function.

Listing 7-9 illustrates these steps using ANSI C. The SpeakHere sample project shows these same steps in the
context of an Objective-C program.

Listing 7-9 Creating an audio queue object

static const int kNumberBuffers = 3;
// Create a data structure to manage information needed by the audio queue
struct myAQStruct {
 AudioFileID mAudioFile;
 CAStreamBasicDescription mDataFormat;
 AudioQueueRef mQueue;
 AudioQueueBufferRef mBuffers[kNumberBuffers];
 SInt64 mCurrentPacket;
 UInt32 mNumPacketsToRead;
 AudioStreamPacketDescription *mPacketDescs;
 bool mDone;
};
// Define a playback audio queue callback function
static void AQTestBufferCallback(
 void *inUserData,
 AudioQueueRef inAQ,
 AudioQueueBufferRef inCompleteAQBuffer
) {
 myAQStruct *myInfo = (myAQStruct *)inUserData;
 if (myInfo->mDone) return;
 UInt32 numBytes;
 UInt32 nPackets = myInfo->mNumPacketsToRead;

 AudioFileReadPackets (
 myInfo->mAudioFile,
 false,
 &numBytes,

Using Sound in iPhone OS 135
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

http://developer.apple.com/iphone/

 myInfo->mPacketDescs,
 myInfo->mCurrentPacket,
 &nPackets,
 inCompleteAQBuffer->mAudioData
);
 if (nPackets > 0) {
 inCompleteAQBuffer->mAudioDataByteSize = numBytes;
 AudioQueueEnqueueBuffer (
 inAQ,
 inCompleteAQBuffer,
 (myInfo->mPacketDescs ? nPackets : 0),
 myInfo->mPacketDescs
);
 myInfo->mCurrentPacket += nPackets;
 } else {
 AudioQueueStop (
 myInfo->mQueue,
 false
);
 myInfo->mDone = true;
 }
}
// Instantiate an audio queue object
AudioQueueNewOutput (
 &myInfo.mDataFormat,
 AQTestBufferCallback,
 &myInfo,
 CFRunLoopGetCurrent(),
 kCFRunLoopCommonModes,
 0,
 &myInfo.mQueue
);

Controlling the Playback Level

Audio queue objects give you two ways to control playback level.

To set playback level directly, use the AudioQueueSetParameter function with the
kAudioQueueParam_Volume parameter, as shown in Listing 7-10. Level change takes effect immediately.

Listing 7-10 Setting the playback level directly

Float32 volume = 1; // linear scale, range from 0.0 through 1.0
AudioQueueSetParameter (
 myAQstruct.audioQueueObject,
 kAudioQueueParam_Volume,
 volume
);

You can also set playback level for an audio queue buffer by using the
AudioQueueEnqueueBufferWithParameters function. This lets you assign audio queue settings that are,
in effect, carried by an audio queue buffer as you enqueue it. Such changes take effect when the buffer
begins playing.

In both cases, level changes for an audio queue remain in effect until you change them again.

136 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

Indicating Playback Level

You can obtain the current playback level from an audio queue object by:

1. Enabling metering for the audio queue object by setting its
kAudioQueueProperty_EnableLevelMetering property to true

2. Querying the audio queue object’s kAudioQueueProperty_CurrentLevelMeter property

The value of this property is an array of AudioQueueLevelMeterState structures, one per channel. Listing
7-11 shows this structure:

Listing 7-11 The AudioQueueLevelMeterState structure

typedef struct AudioQueueLevelMeterState {
 Float32 mAveragePower;
 Float32 mPeakPower;
}; AudioQueueLevelMeterState;

Playing Multiple Sounds Simultaneously

To play multiple sounds simultaneously, create one playback audio queue object for each sound. For each
audio queue, schedule the first buffer of audio to start at the same time using the
AudioQueueEnqueueBufferWithParameters function.

Audio format is critical when you play sounds simultaneously on an iPhone OS–based device. To play
simultaneous sounds, you use the linear PCM (uncompressed) audio format or certain compressed audio
formats, as described in “Audio Playback and Recording Formats” (page 128).

Playing Sounds with Positioning Using OpenAL

The open-sourced OpenAL audio API, available in iPhone OS in the OpenAL framework, provides an interface
optimized for positioning sounds in a stereo field during playback. Playing, positioning, and moving sounds
is simple when you use OpenAL—working the same way as it does on other platforms. OpenAL also lets you
mix sounds. OpenAL uses Core Audio’s I/O unit for playback, resulting in the lowest latency.

For all of the reasons, OpenAL is your best choice for playing sound effects in game applications on iPhone
OS–based devices. However, OpenAL is also a good choice for general iPhone OS application audio playback
needs.

OpenAL 1.1 support in iPhone OS is built on top of Core Audio. For more information, see OpenAL FAQ for
iPhone OS. For OpenAL documentation, see the OpenAL website at http://openal.org. For sample code
showing you how to play OpenAL audio, see oalTouch.

Recording Audio

Core Audio provides support in iPhone OS for recording audio using Audio Queue Services. This interface
does the work of connecting to the audio hardware, managing memory, and employing codecs as needed.
You can record audio in any of the formats listed in “Preferred Audio Formats in iPhone OS” (page 140).

Using Sound in iPhone OS 137
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

http://openal.org/

To record audio, your application configures the audio session, instantiates a recording audio queue object,
and provides a callback function. The callback stores the audio data in memory for immediate use or writes
it to a file for long-term storage.

Recording takes place at a system-defined level in iPhone OS. The system takes input from the audio source
that the user has chosen—the built-in microphone or, if connected, the headset microphone or other input
source.

Just as with playback, you can obtain the current recording audio level from an audio queue object by
querying its kAudioQueueProperty_CurrentLevelMeter property, as described in “Indicating Playback
Level” (page 137).

For detailed examples of how to use Audio Queue Services to record audio, see Recording Audio in Audio
Queue Services Programming Guide. For sample code, see the SpeakHere sample in the iPhone Dev Center.

Parsing Streamed Audio

To play streamed audio content, such as from a network connection, use Audio File Stream Services in concert
with Audio Queue Services. Audio File Stream Services parses audio packets and metadata from common
audio file container formats in a network bitstream. You can also use it to parse packets and metadata from
on-disk files.

In iPhone OS, you can parse the same audio file and bitstream formats that you can in Mac OS X, as follows:

 ■ MPEG-1 Audio Layer 3, used for .mp3 files

 ■ MPEG-2 ADTS, used for the .aac audio data format

 ■ AIFC

 ■ AIFF

 ■ CAF

 ■ MPEG-4, used for .m4a, .mp4, and .3gp files

 ■ NeXT

 ■ WAVE

Having retrieved audio packets, you can play back in any of the formats supported in iPhone OS, as listed in
“Audio Playback and Recording Formats” (page 128).

For best performance, network streaming applications should use data from Wi-Fi connections only. iPhone
OS lets you determine which networks are reachable and available through its System Configuration framework
and its SCNetworkReachability.h interfaces. For sample code, see the Reachability sample in the iPhone
Dev Center.

To connect to a network stream, you can use interfaces from Core Foundation in iPhone OS, such as the
CFHTTPMesaage interface, described in CFHTTPMessage Reference. You parse the network packets to recover
audio packets using Audio File Stream Services. You then buffer the audio packets and send them to a
playback audio queue object.

Audio File Stream Services relies on interfaces from Audio File Services, such as the
AudioFramePacketTranslation structure and the AudioFilePacketTableInfo structure. These are
described in Audio File Services Reference.

138 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/
http://developer.apple.com/iphone/

For more information on using streams, refer to Audio File Stream Services Reference. For sample code, see
the AudioFileStream sample project located in the <Xcode>/Examples/CoreAudio/Services/ directory,
where <Xcode> is the path to your developer tools directory.

Audio Unit Support in iPhone OS

iPhone OS provides a set of audio plug-ins, known as audio units, that you can use in any application. The
interfaces in the Audio Unit framework let you open, connect, and use these audio units. You can also define
custom audio units and use them inside your application. Because you must statically link custom audio unit
code into your application, audio units that you develop cannot be used by other applications in iPhone OS.

Table 7-3 lists the audio units provided in iPhone OS.

Table 7-3 Supported audio units

DescriptionAudio unit

The 3D Mixer unit, of type kAudioUnitSubType_AU3DMixerEmbedded, lets
you mix multiple audio streams, specify stereo output panning, manipulate
sample rate, and more.

3D Mixer unit

The Multichannel Mixer unit, of type kAudioUnitSubType_-
MultiChannelMixer, lets you mix multiple audio streams.

Multichannel Mixer unit

The Converter unit, of type kAudioUnitSubType_AUConverter, lets you
convert audio data from one format to another.

Converter unit

The I/O unit, of type kAudioUnitSubType_RemoteIO, lets you connect to
audio input and output hardware and supports realtime I/O. For sample code
showing you how to use this audio unit, see aurioTouch.

I/O unit

The iPod EQ unit, of type kAudioUnitSubType_AUiPodEQ, provides a simple,
preset-based equalizer you can use in your application.

iPod EQ unit

Best Practices for iPhone Audio

Tips for Manipulating Audio

Table 7-4 lists some basic tips to remember when manipulating audio content in iPhone OS.

Table 7-4 Audio tips

ActionTip

For AAC, MP3, and ALAC (Apple Lossless) audio, decoding takes place in
hardware and, while efficient, is limited to one audio stream at a time. If you
need to play multiple sounds simultaneously, store those sounds using the
IMA4 (compressed) or linear PCM (uncompressed) format.

Use compressed audio
appropriately

Using Sound in iPhone OS 139
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

ActionTip

The afconvert tool in Mac OS X lets you convert to a wide range of audio
data formats and file types. See “Preferred Audio Formats in iPhone OS” (page
140) and the afconvert man page.

Convert to the data format
and file format you need

When playing sound with Audio Queue Services, you write a callback that
sends short segments of audio data to audio queue buffers. In some cases,
loading an entire sound file to memory for playback, which minimizes disk
access, is best. In other cases, loading just enough data at a time to keep the
buffers full is best. Test and evaluate which strategy is best for your application.

Evaluate audio memory
issues

Sample rates and the number of bits per sample have a direct impact on the
size of your uncompressed audio. If you need to play many such sounds,
consider reducing these values to reduce the memory footprint of the audio
data. For example, rather than use 44.1 kHz sampling rate for sound effects,
you could use a 32 kHz (or possibly lower) sample rate and still provide
reasonable quality.

Reduce audio file sizes by
limiting sample rates and
bit depths

Use Core Audio’s System Sound Services to play alerts and user-interface sound
effects. Use OpenAL when you want a convenient, high-level interface for
positioning sounds in a stereo field or when you need low latency playback.
To parse audio packets from a file or a network stream, use Audio File Stream
Services. For simple playback of single or multiple sounds, use the
AVAudioPlayer class. For other audio applications, including playback of
streamed audio and audio recording, use Audio Queue Services.

Pick the appropriate
technology

For the lowest possible playback latency, use OpenAL or use the I/O unit
directly.

Code for low latency

Preferred Audio Formats in iPhone OS

For uncompressed (highest quality) audio, use 16-bit, little endian, linear PCM audio data packaged in a CAF
file. You can convert an audio file to this format in Mac OS X using the afconvert command-line tool.

/usr/bin/afconvert -f caff -d LEI16 {INPUT} {OUTPUT}

The afconvert tool lets you convert to a wide range of audio data formats and file types. See the afconvert
man page, and enter afconvert -h at a shell prompt, for more information.

For compressed audio when playing one sound at a time, and when you don’t need to play audio
simultaneously with the iPod application, use the AAC format packaged in a CAF or m4a file.

For less memory usage when you need to play multiple sounds simultaneously, use IMA4 (IMA/ADPCM)
compression. This reduces file size but entails minimal CPU impact during decompression. As with linear
PCM data, package IMA4 data in a CAF file.

140 Using Sound in iPhone OS
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

Playing Video Files

iPhone OS supports the ability to play back video files directly from your application using the Media Player
framework (MediaPlayer.framework). Video playback is supported in full screen mode only and can be
used by game developers who want to play cut scene animations or by other developers who want to play
media files. When you start a video from your application, the media player interface takes over, fading the
screen to black and then fading in the video content. You can play a video with or without user controls for
adjusting playback; enabling some or all of these controls (shown in Figure 7-1) gives the user the ability to
change the volume, change the playback point, or start and stop the video. If you disable all of these controls,
the video plays until completion.

Figure 7-1 Media player interface with transport controls

To initiate video playback, you must know the URL of the file you want to play. For files your application
provides, this would typically be a pointer to a file in your application’s bundle; however, it can also be a
pointer to a file on a remote server. You use this URL to instantiate a new instance of the
MPMoviePlayerController class. This class presides over the playback of your video file and manages
user interactions, such user taps in the transport controls (if shown). To initiate playback, simply call the play
method of the controller.

Listing 7-12 shows a sample method that plays back the video at the specified URL. The play method is an
asynchronous call that returns control to the caller while the movie plays. The movie controller loads the
movie in a full-screen view, and animates the movie into place on top of the application’s existing content.
When playback is finished, the movie controller sends a notification to the object, which releases the movie
controller now that it is no longer needed.

Listing 7-12 Playing full-screen movies

-(void)playMovieAtURL:(NSURL*)theURL
{
 MPMoviePlayerController* theMovie = [[MPMoviePlayerController alloc]
initWithContentURL:theURL];

 theMovie.scalingMode = MPMovieScalingModeAspectFill;
 theMovie.movieControlMode = MPMovieControlModeHidden;

 // Register for the playback finished notification.
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(myMovieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:theMovie];

Playing Video Files 141
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

 // Movie playback is asynchronous, so this method returns immediately.
 [theMovie play];
}

// When the movie is done, release the controller.
-(void)myMovieFinishedCallback:(NSNotification*)aNotification
{
 MPMoviePlayerController* theMovie = [aNotification object];

 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:theMovie];

 // Release the movie instance created in playMovieAtURL:
 [theMovie release];
}

For more information about the classes of the Media Player framework, seeMediaPlayer FrameworkReference.
For a list of supported video formats, see iPhone OS Technology Overview.

142 Playing Video Files
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Multimedia Support

iPhone OS supports a variety of features that make the mobile computing experience compelling for users.
Through iPhone OS, your applications can access hardware features, such as the accelerometers and camera,
and software features, such as the user’s photo library. The following sections describe these features and
show you how to integrate them into your own applications.

Accessing Accelerometer Events

An accelerometer measures changes in velocity over time along a given linear path. The iPhone and iPod
touch each contain three accelerometers, one along each of the primary axes of the device. This combination
of accelerometers lets you detect movement of the device in any direction. You can use this data to track
both sudden movements in the device and the device’s current orientation relative to gravity.

Every application has a single UIAccelerometer object that can be used to receive acceleration data. You
get the instance of this class using the sharedAccelerometer class method of UIAccelerometer. Using
this object, you set the desired reporting interval and a custom delegate to receive acceleration events. You
can set the reporting interval to be as small as 10 milliseconds, which corresponds to a 100 Hz update rate,
although most applications can operate sufficiently with a larger interval. As soon as you assign your delegate
object, the accelerometer starts sending it data. Thereafter, your delegate receives data at the requested
update interval.

Listing 8-1 shows the basic steps for configuring the accelerometer. In this example, the update frequency
is 50 Hz, which corresponds to an update interval of 20 milliseconds. The myDelegateObject is a custom
object that you define; it must support the UIAccelerometerDelegate protocol, which defines the method
used to receive acceleration data.

Listing 8-1 Configuring the accelerometer

#define kAccelerometerFrequency 50 //Hz
-(void)configureAccelerometer
{
 UIAccelerometer* theAccelerometer = [UIAccelerometer sharedAccelerometer];
 theAccelerometer.updateInterval = 1 / kAccelerometerFrequency;

 theAccelerometer.delegate = self;
 // Delegate events begin immediately.
}

The shared accelerometer delivers event data at regular intervals to your delegate’s
accelerometer:didAccelerate: method, shown in Listing 8-2. You can use this method to process the
accelerometer data however you want. In general it is recommended that you use some sort of filter to isolate
the component of the data in which you are interested.

Accessing Accelerometer Events 143
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

Listing 8-2 Receiving an accelerometer event

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration
{
 UIAccelerationValue x, y, z;
 x = acceleration.x;
 y = acceleration.y;
 z = acceleration.z;

 // Do something with the values.
}

To stop the delivery of acceleration events, set the delegate of the shared UIAccelerometer object to nil.
Setting the delegate object to nil lets the system know that it can turn off the accelerometer hardware as
needed, and thus save battery life.

The acceleration data you receive in your delegate method represents the instantaneous values reported by
the accelerometer hardware. Even when a device is completely at rest, the values reported by this hardware
can fluctuate slightly. When using these values, you should be sure to account for these fluctuations by
averaging out the values over time or by calibrating the data you receive. For example, the Bubble Level
sample application provides controls for calibrating the current angle against a known surface. Subsequent
readings are then reported relative to the calibrated angle. If your own code requires a similar level of accuracy,
you should also include some sort of calibration option in your user interface.

Choosing an Appropriate Update Interval

When configuring the update interval for acceleration events, it is best to choose an interval that minimizes
the number of delivered events while still meeting the needs of your application. Few applications need
acceleration events delivered 100 times a second. Using a lower frequency prevents your application from
running as often and can therefore improve battery life. Table 8-1 lists some typical update frequencies and
what you can do with the acceleration data generated at that frequency.

Table 8-1 Common update intervals for acceleration events

UsageEvent frequency (Hz)

Suitable for use in determining the vector representing the current orientation of
the device.

10–20

Suitable for games and other applications that use the accelerometers for real-time
user input.

30–60

Suitable for applications that need to detect high-frequency motion. For example,
you might use this interval to detect the user hitting the device or shaking it very
quickly.

70–100

144 Accessing Accelerometer Events
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

Isolating the Gravity Component from Acceleration Data

If you are using the accelerometer data to detect the current orientation of a device, you need to be able to
filter out the portion of the acceleration data that is caused by gravity from the portion that is caused by
motion of the device. To do this, you can use a low-pass filter to reduce the influence of sudden changes on
the accelerometer data. The resulting filtered values would then reflect the more constant effects of gravity.

Listing 8-3 shows a simplified version of a low-pass filter. This example uses a low-value filtering factor to
generate a value that uses 10 percent of the unfiltered acceleration data and 90 percent of the previously
filtered value. The previous values are stored in the accelX, accelY, and accelZ member variables of the
class. Because acceleration data comes in regularly, these values settle out quickly and respond slowly to
sudden but short-lived changes in motion.

Listing 8-3 Isolating the effects of gravity from accelerometer data

#define kFilteringFactor 0.1

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {
 // Use a basic low-pass filter to keep only the gravity component of each
axis.
 accelX = (acceleration.x * kFilteringFactor) + (accelX * (1.0 -
kFilteringFactor));
 accelY = (acceleration.y * kFilteringFactor) + (accelY * (1.0 -
kFilteringFactor));
 accelZ = (acceleration.z * kFilteringFactor) + (accelZ * (1.0 -
kFilteringFactor));

 // Use the acceleration data.
}

Isolating Instantaneous Motion from Acceleration Data

If you are using accelerometer data to detect just the instant motion of a device, you need to be able to
isolate sudden changes in movement from the constant effect of gravity. You can do that with a high-pass
filter.

Listing 8-4 shows a simplified high-pass filter computation. The acceleration values from the previous event
are stored in the accelX, accelY, and accelZ member variables of the class. This example computes the
low-pass filter value and then subtracts it from the current value to obtain just the instantaneous component
of motion.

Listing 8-4 Getting the instantaneous portion of movement from accelerometer data

#define kFilteringFactor 0.1

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration {
 // Subtract the low-pass value from the current value to get a simplified
high-pass filter
 accelX = acceleration.x - ((acceleration.x * kFilteringFactor) + (accelX
* (1.0 - kFilteringFactor)));
 accelY = acceleration.y - ((acceleration.y * kFilteringFactor) + (accelY
* (1.0 - kFilteringFactor)));

Accessing Accelerometer Events 145
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

 accelZ = acceleration.z - ((acceleration.z * kFilteringFactor) + (accelZ
* (1.0 - kFilteringFactor)));

 // Use the acceleration data.
}

Getting the Current Device Orientation

If you need to know only the general orientation of the device, and not the exact vector of orientation, you
should use the methods of the UIDevice class to retrieve that information. Using the UIDevice interface is
simpler and does not require you to calculate the orientation vector yourself.

Before getting the current orientation, you must tell the UIDevice class to begin generating device orientation
notifications by calling the beginGeneratingDeviceOrientationNotifications method. Doing so
turns on the accelerometer hardware (which may otherwise be off to conserve power).

Shortly after enabling orientation notifications, you can get the current orientation from the orientation
property of the shared UIDevice object. You can also register to receive
UIDeviceOrientationDidChangeNotification notifications, which are posted whenever the general
orientation changes. The device orientation is reported using the UIDeviceOrientation constants, which
indicate whether the device is in landscape or portrait mode or whether the device is face up or face down.
These constants indicate the physical orientation of the device and need not correspond to the orientation
of your application’s user interface.

When you no longer need to know the orientation of the device, you should always disable orientation
notifications by calling the endGeneratingDeviceOrientationNotifications method of UIDevice.
Doing so gives the system the opportunity to disable the accelerometer hardware if it is not in use elsewhere.

Getting the User’s Current Location

The Core Location framework lets you locate the current position of the device and use that information in
your application. The framework takes advantage of the device’s built-in hardware, triangulating a position
fix from available signal information. It then reports the location to your code and occasionally updates that
position information as it receives new or improved signals.

If you do use the Core Location framework, be sure to do so sparingly and to configure the location service
appropriately. Gathering location data involves powering up the onboard radios and querying the available
cell towers, Wi-Fi hotspots, or GPS satellites, which can take several seconds. In addition, requesting more
accurate location data may require the radios to remain on for a longer period of time. Leaving this hardware
on for extended periods of time can drain the device’s battery. Given that position information does not
change too often, it is usually sufficient to establish an initial position fix and then acquire updates periodically
after that. If you are sure you need regular position updates, you can also configure the service with a minimum
threshold distance to minimize the number of position updates your code must process.

To retrieve the user’s current location, create an instance of the CLLocationManager class and configure
it with the desired accuracy and threshold parameters. To begin receiving location notifications, assign a
delegate to the object and call the startUpdatingLocation method to start the determination of the
user’s current location. When new location data is available, the location manager notifies its assigned delegate
object. If a location update has already been delivered, you can also get the most recent location data directly
from the CLLocationManager object without waiting for a new event to be delivered.

146 Getting the User’s Current Location
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

Listing 8-5 shows implementations of a custom startUpdates method and the
locationManager:didUpdateToLocation:fromLocation: delegate method. The startUpdates
method creates a new location manager object (if one does not already exist) and uses it to start generating
location updates. (In this case, the locationManager variable is a member variable declared by the
MyLocationGetter class, which also conforms to the CLLocationManagerDelegateprotocol.) The handler
method uses the timestamp of the event to determine how recent it is. If it is an old event, the handler ignores
it and waits for a more recent one, at which point it disables the location service.

Listing 8-5 Initiating and processing location updates

#import <CoreLocation/CoreLocation.h>

@implementation MyLocationGetter
- (void)startUpdates
{
 // Create the location manager if this object does not
 // already have one.
 if (nil == locationManager)
 locationManager = [[CLLocationManager alloc] init];

 locationManager.delegate = self;
 locationManager.desiredAccuracy = kCLLocationAccuracyKilometer;

 // Set a movement threshold for new events
 locationManager.distanceFilter = 500;

 [locationManager startUpdatingLocation];
}

// Delegate method from the CLLocationManagerDelegate protocol.
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 // If it's a relatively recent event, turn off updates to save power
 NSDate* eventDate = newLocation.timestamp;
 NSTimeInterval howRecent = [eventDate timeIntervalSinceNow];
 if (abs(howRecent) < 5.0)
 {
 [manager stopUpdatingLocation];

 printf("latitude %+.6f, longitude %+.6f\n",
 newLocation.coordinate.latitude,
 newLocation.coordinate.longitude);
 }
 // else skip the event and process the next one.
}
@end

Checking the timestamp of an event is recommended because the location service often returns the last
cached location event immediately. It can take several seconds to obtain a rough location fix so the old data
simply serves as a way to reflect the last known location. You can also use the accuracy as a means of
determining whether you want to accept an event. As it receives more accurate data, the location service
may return additional events, with the accuracy values reflecting the improvements accordingly.

Getting the User’s Current Location 147
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

Note: The Core Location framework records timestamp values at the beginning of each location query, not
when that query returns. Because Core Location uses several different techniques to get a location fix, queries
can sometimes come back in a different order than their timestamps might otherwise indicate. As a result,
it is normal for new events to sometimes have timestamps that are slightly older than those from previous
events. The framework concentrates on improving the accuracy of the location data with each new event it
delivers, regardless of the timestamp values.

For more information about the objects and methods of the Core Location framework, see Core Location
Framework Reference.

Taking Pictures with the Camera

UIKit provides access to a device’s camera through the UIImagePickerController class. This class displays
the standard system interface for taking pictures using the available camera. It also supports optional controls
for resizing and cropping the image after the user takes it. This class can also be used to select photos from
the user’s photo library.

The view representing the camera interface is a modal view that is managed by the
UIImagePickerController class. You should never access this view directly from your code. To display
it, you must call the presentModalViewController:animated: method of the currently active view
controller, passing a UIImagePickerController object as the new view controller. Upon being installed,
the picker controller automatically slides the camera interface into position, where it remains active until the
user approves the picture or cancels the operation. At that time, the picker controller notifies its delegate of
the user’s choice.

Interfaces managed by the UIImagePickerController class may not be available on all devices. Before
displaying the camera interface, you should always make sure that the interface is available by calling the
isSourceTypeAvailable: class method of the UIImagePickerController class. You should always
respect the return value of this method. If this method returns NO, it means that the current device does not
have a camera or that the camera is currently unavailable for some reason. If the method returns YES, you
display the camera interface by doing the following:

1. Create a new UIImagePickerController object.

2. Assign a delegate object to the picker controller.

In most cases, the current view controller acts as the delegate for the picker, but you can use an entirely
different object if you prefer. The delegate object must conform to the
UIImagePickerControllerDelegate protocol.

3. Set the picker type to UIImagePickerControllerSourceTypeCamera.

4. Optionally, enable or disable the picture editing controls by assigning an appropriate value to the
allowsImageEditing property.

5. Call the presentModalViewController:animated:method of the current view controller to display
the picker.

148 Taking Pictures with the Camera
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

Listing 8-6 shows the code representing the preceding set of steps. As soon as you call the
presentModalViewController:animatedmethod, the picker controller takes over, displaying the camera
interface and responding to all user interactions until the interface is dismissed. To choose an existing photo
from the user’s photo library, all you have to do is change the value in the sourceType property of the picker
to UIImagePickerControllerSourceTypePhotoLibrary.

Listing 8-6 Displaying the interface for taking pictures

-(BOOL)startCameraPickerFromViewController:(UIViewController*)controller
usingDelegate:(id<UIImagePickerControllerDelegate>)delegateObject
{
 if ((![UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
 || (delegateObject == nil) || (controller == nil))
 return NO;

 UIImagePickerController* picker = [[UIImagePickerController alloc] init];
 picker.sourceType = UIImagePickerControllerSourceTypeCamera;
 picker.delegate = delegateObject;
 picker.allowsImageEditing = YES;

 // Picker is displayed asynchronously.
 [controller presentModalViewController:picker animated:YES];
 return YES;
}

When the user taps the appropriate button to dismiss the camera interface, the UIImagePickerController
notifies the delegate of the user’s choice but does not dismiss the interface. The delegate is responsible for
dismissing the picker interface. (Your application is also responsible for releasing the picker when done with
it, which you can do in the delegate methods.) It is for this reason that the delegate is actually the view
controller object that presented the picker in the first place. Upon receiving the delegate message, the view
controller would call its dismissModalViewControllerAnimated:method to dismiss the camera interface.

Listing 8-7 shows the delegate methods for dismissing the camera interface displayed in Listing 8-6 (page
149). These methods are implemented by a custom MyViewController class, which is a subclass of
UIViewController and, for this example, is considered to be the same object that displayed the picker in
the first place. The useImage: method is an empty placeholder for the work you would do in your own
version of this class and should be replaced by your own custom code.

Listing 8-7 Delegate methods for the image picker

@implementation MyViewController (ImagePickerDelegateMethods)

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image
 editingInfo:(NSDictionary *)editingInfo
{
 [self useImage:image];

 // Remove the picker interface and release the picker object.
 [[picker parentViewController] dismissModalViewControllerAnimated:YES];
 [picker release];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{

Taking Pictures with the Camera 149
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

 [[picker parentViewController] dismissModalViewControllerAnimated:YES];
 [picker release];
}

// Implement this method in your code to do something with the image.
- (void)useImage:(UIImage*)theImage
{
}
@end

If image editing is enabled and the user successfully picks an image, the image parameter of the
imagePickerController:didFinishPickingImage:editingInfo:method contains the edited image.
You should treat this image as the selected image, but if you want to store the original image, you can get
it (along with the crop rectangle) from the dictionary in the editingInfo parameter.

Picking a Photo from the Photo Library

UIKit provides access to the user’s photo library through the UIImagePickerController class. This controller
displays a photo picker interface, which provides controls for navigating the user’s photo library and selecting
an image to return to your application. You also have the option of enabling user editing controls, which let
the user the pan and crop the returned image. This class can also be used to present a camera interface.

Because the UIImagePickerController class is used to display the interface for both the camera and the
user’s photo library, the steps for using the class are almost identical for both. The only difference is that you
assign the UIImagePickerControllerSourceTypePhotoLibrary value to the sourceType property of
the picker object. The steps for displaying the camera picker are discussed in “Taking Pictures with the
Camera” (page 148).

Note: As you do for the camera picker, you should always call the isSourceTypeAvailable: class method
of the UIImagePickerController class and respect the return value of the method. You should never
assume that a given device has a photo library. Even if the device has a library, this method could still return
NO if the library is currently unavailable.

150 Picking a Photo from the Photo Library
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Device Support

In traditional desktop applications, preferences are application-specific settings used to configure the behavior
or appearance of an application. iPhone OS also supports application preferences, although not as an integral
part of your application. Instead of each application displaying a custom user interface for its preferences,
all application-level preferences are displayed using the system-supplied Settings application.

In order to integrate your custom application preferences into the Settings application, you must include a
specially formatted settings bundle in the top-level directory of your application bundle. This settings bundle
provides information about your application preferences to the Settings application, which is then responsible
for displaying those preferences and updating the preferences database with any user-supplied values. At
runtime, your application retrieves these preferences using the standard retrieval APIs. The sections that
follow describe both the format of the settings bundle and the APIs you use to retrieve your preferences
values.

Guidelines for Preferences

Adding your application preferences to the Settings application is most appropriate for productivity-style
applications and in situations where you have preference values that are typically configured once and then
rarely changed. For example, the Mail application uses these preferences to store the user’s account information
and message-checking settings. Because the Settings application has support for displaying preferences
hierarchically, manipulating your preferences from the Settings application is also more appropriate when
you have a large number of preferences. Providing the same set of preferences in your application might
require too many screens and might cause confusion for the user.

When your application has only a few options or has options that the user might want to change regularly,
you should think carefully about whether the Settings application is the right place for them. For instance,
utility applications provide custom configuration options on the back of their main view. A special control
on the view flips it over to display the options and another control flips the view back. For simple applications,
this type of behavior provides immediate access to the application’s options and is much more convenient
for the user than going to Settings.

For games and other full-screen applications, you can use the Settings application or implement your own
custom screens for preferences. Custom screens are often appropriate in games because those screens are
treated as part of the game’s setup. You can also use the Settings application for your preferences if you
think it is more appropriate for your game flow.

Guidelines for Preferences 151
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

Note: You should never spread your preferences across the Settings application and custom application
screens. For example, a utility application with preferences on the back side of its main view should not also
have configurable preferences in the Settings application. If you have preferences, pick one solution and use
it exclusively.

The Preferences Interface

The Settings application implements a hierarchical set of pages for navigating application preferences. The
main page of the Settings application displays the system and third-party applications whose preferences
can be customized. Selecting a third-party application takes the user to the preferences for that application.

Each application has at least one page of preferences, referred to as the main page. If your application has
only a few preferences, the main page may be the only one you need. If the number of preferences gets too
large to fit on the main page, however, you can add more pages. These additional pages become child pages
of the main page. The user accesses them by tapping on a special type of preference, which links to the new
page.

Each preference you display must be of a specific type. The type of the preference defines how the Settings
application displays that preference. Most preference types identify a particular type of control that is used
to set the preference value. Some types provide a way to organize preferences, however. Table 9-1 lists the
different element types supported by the Settings application and how you might use each type to implement
your own preference pages.

Table 9-1 Preference element types

DescriptionElement Type

The text field type displays an optional title and an editable text field. You can use this
type for preferences that require the user to specify a custom string value.

The key for this type is PSTextFieldSpecifier.

Text Field

The title type displays a read-only string value. You can use this type to display read-only
preference values. (If the preference contains cryptic or nonintuitive values, this type lets
you map the possible values to custom strings.)

The key for this type is PSTitleValueSpecifier.

Title

The toggle switch type displays an ON/OFF toggle button. You can use this type to configure
a preference that can have only one of two values. Although you typically use this type to
represent preferences containing Boolean values, you can also use it with preferences
containing non-Boolean values.

The key for this type is PSToggleSwitchSpecifier.

Toggle Switch

The slider type displays a slider control. You can use this type for a preference that
represents a range of values. The value for this type is a real number whose minimum and
maximum you specify.

The key for this type is PSSliderSpecifier.

Slider

152 The Preferences Interface
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

DescriptionElement Type

The multi value type lets the user select one value from a list of values. You can use this
type for a preference that supports a set of mutually exclusive values. The values can be
of any type.

The key for this type is PSMultiValueSpecifier.

Multi value

The group type is a way for you to organize groups of preferences on a single page. The
group type does not represent a configurable preference. It simply contains a title string
that is displayed immediately before one or more configurable preferences.

The key for this type is PSGroupSpecifier.

Group

The child pane type lets the user navigate to a new page of preferences. You use this type
to implement hierarchical preferences. For more information on how you configure and
use this preference type, see “Hierarchical Preferences” (page 155). The key for this type is
PSChildPaneSpecifier.

Child Pane

For detailed information about the format of each preference type, see Settings Application SchemaReference.
To learn now to create and edit Setting page files, see “Adding and Modifying the Settings Bundle” (page
156).

The Settings Bundle

In iPhone OS, you specify your application’s preferences through a special settings bundle. This bundle has
the name Settings.bundle and resides in the top-level directory of your application’s bundle. This bundle
contains one or more Settings Page files that provide detailed information about your application’s preferences.
It may also include other support files needed to display your preferences, such as images or localized strings.
Table 9-2 lists the contents of a typical settings bundle.

Table 9-2 Contents of the Settings.bundle directory

DescriptionItem name

The Settings Page file containing the preferences for the root page. The
contents of this file are described in more detail in “The Settings Page File
Format” (page 154).

Root.plist

If you build a set of hierarchical preferences using child panes, the contents
for each child pane are stored in a separate Settings Page file. You are
responsible for naming these files and associating them with the correct child
pane.

Additional .plist files.

These directories store localized string resources for your Settings Page files.
Each directory contains a single strings file, whose title is specified in your
Settings Page. The strings files provide the localized content to display to the
user for each of your preferences.

One or more .lproj
directories

If you use the slider control, you can store the images for your slider in the
top-level directory of the bundle.

Additional images

The Settings Bundle 153
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

In addition to the settings bundle, your application bundle can contain a custom icon for your application
settings. If a file with the name Icon-Settings.png is located in the top of your application’s bundle
directory, that icon is used to identify your application preferences in the Settings application. If no such
image file is present, the Settings application uses your application’s icon file (Icon.png by default) instead,
scaling it as necessary. Your Icon-Settings.png file should be a 29 x 29 pixel image.

When the Settings application launches, it checks each custom application for the presence of a settings
bundle. For each custom bundle it finds, it loads that bundle and displays the corresponding application’s
name and icon in the Settings main page. When the user taps the row belonging to your application, Settings
loads the Root.plist Settings Page file for your settings bundle and uses that file to display your application’s
main page of preferences.

In addition to loading your bundle’s Root.plist Settings Page file, the Settings application also loads any
language-specific resources for that file, as needed. Each Settings Page file can have an associated .strings
file containing localized values for any user-visible strings. As it prepares your preferences for display, the
Settings application looks for string resources in the user’s preferred language and substitutes them into
your preferences page prior to display.

The Settings Page File Format

Each Settings Page file in your settings bundle is stored in the iPhone Settings property-list file format, which
is a structured file format. The simplest way to edit Settings Page files is using Xcode’s built in editor facilities;
see “Preparing the Settings Page for Editing” (page 157). You can also edit property-list files using the Property
List Editor application that comes with the Xcode tools.

Note: Xcode automatically converts any XML-based property files in your project to binary format when
building your application. This conversion saves space and is done for you automatically at build time.

The root element of each Settings Page file contains the keys listed in Table 9-3. Only one key is actually
required, but it is recommended that you include both of them.

Table 9-3 Root-level keys of a preferences Settings Page file

ValueTypeKey

The value for this key is an array of dictionaries, with each dictionary
containing the information for a single preference element. For a list
of element types, see Table 9-1 (page 152). For a description of the
keys associated with each element type, see SettingsApplicationSchema
Reference.

ArrayPreferenceSpecifiers
(required)

The name of the strings file associated with this file. A copy of this file
(with appropriate localized strings) should be located in each of your
bundle’s language-specific project directories. If you do not include
this key, the strings in this file are not localized. For information on
how these strings are used, see “Localized Resources” (page 156).

StringStringsTable

154 The Settings Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

Hierarchical Preferences

If you plan to organize your preferences hierarchically, each page you define must have its own separate
.plist file. Each .plist file contains the set of preferences displayed only on that page. Your application’s
main preferences page is always stored in the Root.plist file. Additional pages can be given any name
you like.

To specify a link between a parent page and a child page, you include a child pane element in the parent
page. A child pane element creates a row that, when tapped, displays a new page of settings. The File key
of the child pane element identifies the name of the .plist file that defines the contents of the child page.
The Title key identifies the title of the child page; this title is also used as the text of the row that the user
taps to display the child page. The Settings application automatically provides navigation controls on the
child page to allow the user to navigate back to the parent page.

Figure 9-1 shows how this hierarchical set of pages works. The left side of the figure shows the .plist files,
and the right side shows the relationships between the corresponding pages.

Figure 9-1 Organizing preferences using child panes

Sounds

New Voicemail
Group 1

Group 2

New Email
Sent Mail

Ringtones

Sounds page

Settings

Group 1
Usage

Sounds
Group 2

Group 3

Brightness
Wallpaper

General

Root page

Sounds.plist

Root.plist

General.plist

General page

General

Date & Time
Group 1

Network
Keyboard

For more information about child pane elements and their associated keys, see Settings Application Schema
Reference.

The Settings Bundle 155
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

Localized Resources

Because preferences contain user-visible strings, you should provide localized versions of those strings with
your settings bundle. Each page of preferences can have an associated .strings file for each localization
supported by your bundle. When the Settings application encounters a key that supports localization, it
checks the appropriately localized .strings file for a matching key. If it finds one, it displays the value
associated with that key.

When looking for localized resources such as .strings files, the Settings application follows the same rules
that Mac OS X applications do. It first tries to find a localized version of the resource that matches the user’s
preferred language setting. If a resource does not exist for the user’s preferred language, an appropriate
fallback language is selected.

For information about the format of strings files, language-specific project directories, and how
language-specific resources are retrieved from bundles, see Internationalization Programming Topics.

Adding and Modifying the Settings Bundle

Xcode provides a template for adding a Settings bundle to your current project. The default settings bundle
contains a Root.plist file and a default language directory for storing any localized resources. You can
then expand this bundle to include additional property list files and resources needed by your Settings
bundle.

Adding the Settings Bundle

To add a settings bundle to your Xcode project:

1. Choose File > New File.

2. Choose the iPhone OS > Settings > Settings Bundle template.

3. Name the file Settings.bundle.

In addition to adding a new Settings bundle to your project, Xcode automatically adds that bundle to the
Copy Bundle Resources build phase of your application target. Thus, all you have to do is modify the property
list files of your Settings bundle and add any needed resources.

The newly added Settings.bundle bundle has the following structure:

Settings.bundle/
 Root.plist
 en.lproj/
 Root.strings

156 Adding and Modifying the Settings Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

Preparing the Settings Page for Editing

After creating your Settings bundle using the Settings Bundle template, you can format the contents of your
schema files to make them easier to edit. The following steps show you how to do this for the Root.plist
file of your Settings bundle but the steps are the same for any other schema files you create.

1. Display the contents of the Root.plist file of your Settings bundle.

a. In the Groups & Files list, disclose Settings.bundle to view its contents.

b. Select the Root.plist file. Its contents appear in the Detail view.

2. In the Detail view, select the Root key of the Root.plist file.

3. Choose View > Property List Type > iPhone Settings plist.

This command formats the contents of the property list inside the Detail view. Instead of showing the
property list key names and values, Xcode substitutes human-readable strings (as shown in Figure 9-2)
to make it easier to understand and edit the file’s contents.

Figure 9-2 Formatted contents of the Root.plist file

Configuring a Settings Page: A Tutorial

This section contains a tutorial that shows you how to configure a Settings page to display the controls you
want. The goal of the tutorial is to create a page like the one in Figure 9-2. If you have not yet created a
Settings bundle for your project, you should do so as described in “Preparing the Settings Page for
Editing” (page 157) before proceeding with these steps.

Adding and Modifying the Settings Bundle 157
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

Figure 9-3 A root Settings page

1. Change the value of the Settings Page Title key to the name of your application.

Double-click the YOUR_PROJECT_NAME text and change the text to MyApp.

2. Disclose the Preference Items key to display the default items that come with the template.

3. Change the title of Item 1 to Sound:

 ■ Disclose Item 1 of Preference Items.

 ■ Change the value of the Title key from Group to Sound.

 ■ Leave the Type key set to Group.

4. Create the first toggle switch for the newly renamed Sound group.

 ■ Select Item 3 of Preference Items and choose Edit > Cut.

 ■ Select Item 1 and choose Edit > Paste. (This moves the toggle switch item in front of the text field
item.)

 ■ Disclose the toggle switch item to reveal its configuration keys.

 ■ Change the value of the Title key to Play Sounds.

 ■ Change the value of the Identifier key to play_sounds_preference. The item should now be
configured as shown in the following figure.

158 Adding and Modifying the Settings Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

5. Create a second toggle switch for the Sound group.

 ■ Select Item 2 (the Play Sounds toggle switch).

 ■ Select Edit > Copy.

 ■ Select Edit >Paste. This places a copy of the toggle switch right after the first one.

 ■ Disclose the new toggle switch item to reveal its configuration keys.

 ■ Change the value of its Title key to 3D Sound.

 ■ Change the value of its Identifier key to 3D_sound_preference.

At this point, you have finished the first group of settings and are ready to create the User Info group.

6. Change Item 4 into a Group element and name it User Info.

 ■ Click Item 4 in the Preferences Items. This displays a drop-down menu with a list of item types.

 ■ From the drop-down menu, select Group to change the type of the element.

Adding and Modifying the Settings Bundle 159
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

 ■ Disclose the contents of Item 4.

 ■ Set the value of the Title key to User Info.

7. Create the Name field.

 ■ Select Item 5 in the Preferences Item.

 ■ Using the drop-down menu, change its type to Text Field.

 ■ Set the value of the Title key to User Info.

 ■ Set value of the Identifier key to user_name.

 ■ Toggle the disclosure button of the item to hide its contents.

8. Create the Experience Level settings.

 ■ Select Item 5 and click the plus (+) button (or press Return) to create a new item.

 ■ Click the new item and set its type to Multi Value.

 ■ Disclose the items contents and set its title to Experience Level, its identifier to
experience_preference, and its default value to 0.

 ■ With the Default Value key selected, click the plus button to add a Titles array.

 ■ Open the disclosure button for the Titles array and click the items button along the right edge
of the table. Clicking this button adds a new subitem to Titles.

160 Adding and Modifying the Settings Bundle
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

 ■ Select the new subitem and click the plus button 2 more times to create 3 total subitems.

 ■ Set the values of the subitems to Beginner, Expert, and Master.

 ■ Select the Titles key again and click its disclosure button to hide its subitems.

 ■ Click the plus button to create the Values array.

 ■ Add 3 subitems to the Values array and set their values to 0, 1, and 2.

 ■ Click the disclosure button of Item 6 to hide its contents.

9. Add the final group to your settings page.

 ■ Create a new item and set its type to Group and its title to Gravity.

 ■ Create another new item and set its type to Slider, its identifier to gravity_preference, its
default value to 1, and its maximum value to 2.

Creating Additional Settings Page Files

The Settings Bundle template includes the Root.plist file, which defines your application’s top Settings
page. To define additional Settings pages, you must add additional property list files to your Settings bundle.
You can do this either from the Finder or from Xcode.

To add a property list file to your Settings bundle in Xcode, do the following:

1. In the Groups and Files pane, open your Settings bundle and select the Root.plist file.

2. Choose File > New.

3. Choose Other > Property List.

4. Select the new file and choose View > Property List Type > iPhone Settings plist to configure it as a
settings file.

After adding a new Settings page to your Settings bundle, you can edit the page’s contents as described in
“Configuring a Settings Page: A Tutorial” (page 157). To display the settings for your page, you must reference
it from a Child Pane element as described in “Hierarchical Preferences” (page 155).

Accessing Your Preferences

iPhone applications get and set preferences values using either the Foundation and Core Foundation
frameworks. In the Foundation framework, you use the NSUserDefaults class to get and set preference
values. In the Core Foundation framework, you use several preferences-related functions to get and set values.

Listing 9-1 shows a simple example of how to read a preference value from your application. This example
uses the NSUserDefaults class to read a Boolean value from preferences and assign it to an
application-specific instance variable.

Accessing Your Preferences 161
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

Listing 9-1 Accessing preference values in an application

- (void)applicationDidFinishLaunching:(UIApplication *)application
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [self setMyAppBoolProperty:[defaults boolForKey:MY_BOOL_PREF_KEY]];

 // Finish app initialization...
}

For information about the NSUserDefaultsmethods used to read and write preferences, seeNSUserDefaults
Class Reference. For information about the Core Foundation functions used to read and write preferences,
see Preferences Utilities Reference.

Debugging Preferences for Simulated Applications

When running your application, the iPhone Simulator stores any preferences values for your application in
~/Library/Application Support/iPhone
Simulator/User/Applications/<APP_ID>/Library/Preferences, where <APP_ID> is a
programmatically generated directory name that iPhone OS uses to identify your application.

Each time you reinstall your application, iPhone OS performs a clean install, which deletes any previous
preferences. In other words, building or running your application from Xcode always installs a new version,
replacing any old contents. To test preference changes between successive executions, you must run your
application directly from the simulator interface and not from Xcode.

162 Debugging Preferences for Simulated Applications
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Application Preferences

This table describes the changes to iPhone Application Programming Guide.

NotesDate

Fixed several typos and clarified the creation process for child pages in the
Settings application.

2009-01-06

Added guidance about floating-point math considerations2008-11-12

Updated information related to what is backed up by iTunes.

Reorganized the contents of the book.2008-10-15

Moved the high-level iPhone OS information to iPhoneOS Technology Overview.

Moved information about the standard system URL schemes toAppleURLScheme
Reference.

Moved information about the development tools and how to configure devices
to iPhone Development Guide.

Created the Core Application chapter, which now introduces the application
architecture and covers much of the guidance for creating iPhone applications.

Added a Text and Web chapter to cover the use of text and web classes and the
manipulation of the onscreen keyboard.

Created a separate chapter for Files and Networking and moved existing
information into it.

Changed the title from iPhone OS Programming Guide.

New document that describes iPhone OS and the development process for
iPhone applications.

2008-07-08

163
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

164
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	iPhone Application Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	The Core Application
	Core Application Architecture
	The Application Life Cycle
	The Main Function
	The Application Delegate
	The Main Nib File

	The Event-Handling Cycle
	Fundamental Design Patterns

	The Application Runtime Environment
	Fast Launch, Short Use
	The Application Sandbox
	The Virtual Memory System
	The Automatic Sleep Timer

	The Application Bundle
	The Information Property List
	Application Icon and Launch Images
	Nib Files

	Handling Critical Application Tasks
	Initialization and Termination
	Responding to Interruptions
	Observing Low-Memory Warnings

	Customizing Your Application’s Behavior
	Launching in Landscape Mode
	Communicating with Other Applications
	Implementing Custom URL Schemes
	Registering Custom URL Schemes
	Handling URL Requests

	Displaying Application Preferences

	Internationalizing Your Application
	Tuning for Performance and Responsiveness
	Using Memory Efficiently
	Reducing Your Application’s Memory Footprint
	Allocating Memory Wisely

	Floating-Point Math Considerations
	Reducing Power Consumption
	Tuning Your Code

	Window and Views
	What Are Windows and Views?
	The Role of UIWindow
	The Role of UIView
	UIKit View Classes
	The Role of View Controllers

	View Architecture and Geometry
	The View Interaction Model
	The View Rendering Architecture
	Core Animation Basics
	Changing the Layer of a View
	Animation Support

	View Coordinate Systems
	The Relationship of the Frame, Bounds, and Center
	Coordinate System Transformations
	Content Modes and Scaling
	Autoresizing Behaviors

	Creating and Managing the View Hierarchy
	Creating a View Object
	Adding and Removing Subviews
	Converting Coordinates in the View Hierarchy
	Tagging Views

	Modifying Views at Runtime
	Animating Views
	Configuring Animation Parameters
	Configuring an Animation Delegate

	Responding to Layout Changes
	Redrawing Your View’s Content
	Hiding Views

	Creating a Custom View
	Initializing Your Custom View
	Drawing Your View’s Content
	Responding to Events
	Cleaning Up After Your View

	Event Handling
	Events and Touches
	Event Delivery
	Responder Objects and the Responder Chain
	Regulating Event Delivery

	Handling Multi-Touch Events
	The Event-Handling Methods
	Handling Single and Multiple Tap Gestures
	Detecting Swipe Gestures
	Handling a Complex Multi-Touch Sequence
	Event-Handling Techniques

	Graphics and Drawing
	The UIKit Graphics System
	The View Drawing Cycle
	Coordinates and Coordinate Transforms
	Graphics Contexts
	Points Versus Pixels
	Color and Color Spaces
	Supported Image Formats

	Drawing Tips
	Deciding When to Use Custom Drawing Code
	Improving Drawing Performance
	Maintaining Image Quality

	Drawing with Quartz and UIKit
	Configuring the Graphics Context
	Creating and Drawing Images
	Creating and Drawing Paths
	Creating Patterns, Gradients, and Shadings

	Drawing with OpenGL ES
	Setting Up a Rendering Surface
	Best Practices
	General Guidelines
	CPU Usage
	Vertex Data
	Textures
	Drawing Order
	Lighting
	Debugging and Tuning

	Implementation Details
	OpenGL ES Implementation
	Hardware Capabilities
	Supported Extensions
	Memory
	Rendering Path

	Simulator Capabilities
	Supported Extensions
	Memory
	Rendering Path

	For More Information

	Applying Core Animation Effects
	About Layers
	About Animations

	Text and Web
	About Text and Web Support
	Text Views
	Web View
	Keyboards and Input Methods

	Managing the Keyboard
	Receiving Keyboard Notifications
	Displaying the Keyboard
	Dismissing the Keyboard
	Moving Content That Is Located Under the Keyboard

	Drawing Text

	Files and Networking
	File and Data Management
	Commonly Used Directories
	Backup and Restore
	Getting Paths to Application Directories
	Reading and Writing File Data
	Reading and Writing Property List Data
	Using Archivers to Read and Write Data
	Writing Data to Your Documents Directory
	Reading Data from the Documents Directory

	File Access Guidelines
	Saving State Information
	Case Sensitivity

	Networking
	Tips for Efficient Networking
	Using Wi-Fi

	Multimedia Support
	Using Sound in iPhone OS
	The Basics: Hardware Codecs, Audio Formats, and Audio Sessions
	iPhone Audio Hardware Codecs
	Audio Playback and Recording Formats
	Audio Sessions

	Playing Audio
	Playing Short Sounds or Invoking Vibration Using System Sound Services
	Playing Sounds Easily with the AVAudioPlayer Class
	Playing Sounds with Control Using Audio Queue Services
	Creating an Audio Queue Object
	Controlling the Playback Level
	Indicating Playback Level
	Playing Multiple Sounds Simultaneously

	Playing Sounds with Positioning Using OpenAL

	Recording Audio
	Parsing Streamed Audio
	Audio Unit Support in iPhone OS
	Best Practices for iPhone Audio
	Tips for Manipulating Audio
	Preferred Audio Formats in iPhone OS

	Playing Video Files

	Device Support
	Accessing Accelerometer Events
	Choosing an Appropriate Update Interval
	Isolating the Gravity Component from Acceleration Data
	Isolating Instantaneous Motion from Acceleration Data
	Getting the Current Device Orientation

	Getting the User’s Current Location
	Taking Pictures with the Camera
	Picking a Photo from the Photo Library

	Application Preferences
	Guidelines for Preferences
	The Preferences Interface
	The Settings Bundle
	The Settings Page File Format
	Hierarchical Preferences
	Localized Resources

	Adding and Modifying the Settings Bundle
	Adding the Settings Bundle
	Preparing the Settings Page for Editing
	Configuring a Settings Page: A Tutorial
	Creating Additional Settings Page Files

	Accessing Your Preferences
	Debugging Preferences for Simulated Applications

	Revision History

