
iPhone Development Guide
Development Environments: Xcode

2009-01-06

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, iPhoto, iPod,
iTunes, Keychain, Mac, Mac OS, Objective-C,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder, iPhone, and Spotlight are trademarks
of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Organization of This Document 9
See Also 10

Chapter 1 The Development Process 11

Essential Development Tasks 11
Creating an iPhone Project 12
Editing Code 13
Using Code Completion 14
Accessing Documentation 15
Building and Running Your Application 17
Measuring Application Performance 18
Further Exploration 18

Chapter 2 Tutorial: Hello, World! 19

Create the Project 19
Write the Code 21
Run the Application 23
Further Exploration 23

Chapter 3 Running Applications 25

Setting Your Application’s Target iPhone OS Release 25
Setting the Active SDK 26
Setting the Active Build Configuration 27
Building Your Application 28
Running Your Application 28
Streamlining the Build-and-Run Workflow 29
Managing Application Data 29
Further Exploration 29

Chapter 4 Using iPhone Simulator 31

Manipulating the Hardware 31
Performing Gestures 32
Installing Applications 32
Uninstalling Applications 32
Resetting Content and Settings 33
Core Location Functionality 33

3
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

iPhone Simulator File System on Host 33
Further Exploration 33

Chapter 5 Managing Devices 35

Preparing Devices for Development 35
Setting Your Application ID 37
Registering Your Device with the Program Portal 37
Installing iPhone OS on Your Device 38
Obtaining Your Development Certificate 38
Adding Your Development Certificate to Your Keychain 39
Obtaining Your Provisioning Profile 40
Adding Your Provisioning Profile to the Xcode Organizer 40
Installing Your Provisioning Profile on Your Device 40

Restoring System Software 40
Running Applications on a Device 41
Viewing Console and Crash Logs 42
Capturing Screen Shots 43
Managing Your Digital Identifications 43

Chapter 6 Debugging Applications 45

General Debugging Tasks 45
Memory Leaks 46

Chapter 7 Tuning Applications 49

The Instruments Application 49
The Shark Application 50

Chapter 8 Publishing Applications for Testing 51

Adding Testers to Your Team 52
Adding the iTunes Artwork to Your Application 52
Distributing Your Application to Testers 53
Adding Symbol Information to Crash Logs from Testers 54

Chapter 9 Conditional Compilation and Linkage 55

Compiling Source Code Conditionally for iPhone Applications 55
Linking Frameworks Conditionally for iPhone Applications 56

4
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 10 iPhone Development FAQ 59

Appendix A Instructions for Application Testers 61

Sending Your Device ID to Developers 61
Installing an Application for Testing 61
Sending Crash Reports to Developers 62

Sending Crash Reports from Macs 62
Sending Crash Reports from Windows 62

Glossary 65

Document Revision History 67

5
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 The Development Process 11

Figure 1-1 Project window 13
Figure 1-2 Using code completion 14
Figure 1-3 The Documentation window 15
Figure 1-4 Viewing API reference in the Documentation window 16
Figure 1-5 Viewing API reference in the Research Assistant 17

Chapter 2 Tutorial: Hello, World! 19

Listing 2-1 Method to draw “Hello, World!” in a view 22

Chapter 4 Using iPhone Simulator 31

Table 4-1 Performing gestures in iPhone Simulator 32

Chapter 5 Managing Devices 35

Figure 5-1 Preparing computers and devices for iPhone development 36
Figure 5-2 Organizer: Copying your device identifier 38

Chapter 8 Publishing Applications for Testing 51

Figure 8-1 Adding testers to your team 51
Figure 8-2 Generic iTunes artwork for test applications 53

Chapter 9 Conditional Compilation and Linkage 55

Listing 9-1 Determining whether you’re compiling for the simulator 55
Listing 9-2 Determining whether you’re compiling for iPhone OS 55

Appendix A Instructions for Application Testers 61

Listing A-1 Crash log storage on Windows Vista 62
Listing A-2 Crash log storage on Windows XP 62

7
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

8
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

To develop iPhone applications, you use Xcode, Apple’s first-class integrated development environment
(IDE). Xcode provides all the tools you need to design your application’s user interface and write the code
that brings it to life. As you develop your application, you run it on your computer, an iPhone, or an iPod
touch.

This document describes the iPhone application development process. It also provides information about
becoming a member of the iPhone Developer Program, which is required to run applications on devices for
testing.

After you finish developing your iPhone application, you submit it to the App Store, the secure marketplace
where iPhone OS users obtain their applications. However, you should test your application on a small set
of users before publishing it to cover a wide variety of usage patterns and get feedback about your product.
This document describes how to create a group of testers for your application and how to distribute it to
them.

To take advantage of this document, you should be familiar with the iPhone application architecture, described
in iPhone Application Programming Guide. You should also be familiar with basic programming concepts.

After reading this document, you’ll have a basic understanding of the iPhone application development
process. To enhance that knowledge, you should read the documents listed later in this introduction.

Organization of This Document

This document contains the following chapters:

 ■ “The Development Process” (page 11) provides an overview of the major development tasks you follow
to design, build, and run an application using Xcode.

 ■ “Tutorial: Hello, World” (page 19) guides you through the creation of a simple project, Hello World, that
prints text on the iPhone screen.

 ■ “Running Applications” (page 25) describes each of the steps required to run or debug your iPhone
applications.

 ■ “Using iPhone Simulator” (page 31) describes the ways in which you use your computer’s input devices
to simulate the interaction between users and their devices.

 ■ “Managing Devices” (page 35) shows how to configure your computer and your device for development;
how to use the Xcode Organizer window to view console logs or crash information, and take screen
shots of applications running on your device; and how to safeguard the digital identifications required
to install applications in development on devices.

 ■ “Debugging Applications” (page 45) describes the Xcode debugging facilities.

 ■ “Tuning Applications” (page 49) describes Instruments and Shark, the tools you use to measure and
tune your application’s performance.

Organization of This Document 9
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

 ■ “Publishing Applications for Testing” (page 51) describes the steps you need to perform to add testers
to your team and shows how to add symbol information to their crash logs, also known as symbolicating.

 ■ “Conditional Compilation and Linkage” (page 55) shows how to target code to iPhone Simulator or a
device and how to link to frameworks or libraries depending on that choice.

 ■ “iPhone Simulator FAQ” (page 59) lists common questions developers ask about iPhone Simulator.

 ■ “Instructions for Application Testers” (page 61) provides instructions to testers about the procedures to
follow to test your iPhone applications on their devices.

See Also

These documents describe the essential concepts you need to know about developing iPhone applications:

 ■ iPhone OS Technology Overview introduces iPhone OS and its technologies.

 ■ Cocoa Fundamentals Guide introduces the basic concepts, terminology, architectures, and design patterns
of the Cocoa frameworks and development environment.

 ■ The Objective-C 2.0 Programming Language introduces object-oriented programming and describes the
main programming language used for iPhone development.

10 See Also
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Developing iPhone applications is a pleasant and rewarding endeavor. To convert your ideas into products
you use Xcode, the integrated development environment (IDE) used to develop iPhone applications. With
Xcode you organize and edit your source files, view documentation, build your application, debug your code,
and optimize your application’s performance.

This chapter provides an overview of the major development tasks you follow to design, build, and run an
application using Xcode.

Essential Development Tasks

The iPhone-application development process is divided into these major steps:

1. Create your project.

Xcode provides several project templates that get you started. You choose the template that implements
the type of application you want to develop. See “Creating an iPhone Project” (page 12) for details.

2. Design the user interface.

The Interface Builder application lets you design your application’s user interface graphically and save
those designs as resource files that you load into your application at runtime. If you do not want to use
Interface Builder, you can layout your user interface programmatically. See “User Interface Design
Considerations” in iPhone Application Programming Guide for more information.

3. Write code.

Xcode provides several features that help you write code fast, including class and data modeling, code
completion, direct access to documentation, and refactoring. See “Editing Code” (page 13) for details.

4. Build and run your application.

You build your application on your computer and run it in the iPhone Simulator application or on your
device. See “Building and Running Your Application” (page 17) for more information.

5. Measure and tune application performance.

After you have a running application, you should measure its performance to ensure that it uses a device’s
resources as efficiently as possible and that it provides adequate responses to the user’s gestures. See
“Measuring Application Performance” (page 18) for more information.

The rest of this chapter gives more details about these steps.

Essential Development Tasks 11
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

Creating an iPhone Project

Xcode provides several iPhone-application project templates to get you up and running developing your
application. You can choose from these types of application:

 ■ Navigation-Based Application. An application that presents data hierarchically, using multiple screens.
The Contacts application is an example of a navigation-based application.

 ■ OpenGL ES Application. An application that uses an OpenGL ES–based view to present images or
animation.

 ■ Tab Bar Application. An application that presents a radio interface that lets the user choose from several
screens. The Clock application is an example of a tab bar application.

 ■ View-Based Application. An application that uses a single view to implement its user interface.

 ■ Utility Application. An application that implements a main view and lets the user access a flipside view
to perform simple customizations. The Stocks application is an example of a utility application.

 ■ Window-Based Application. This template serves as a starting point for any application, containing an
application delegate and a window. Use this template when you want to implement your own view
hierarchy.

If you need to develop a static library for use in an iPhone application, you can add a static library target to
your project by choosing Project > New Target and selecting the Static Library target template in the iPhone
OS/Cocoa Touch list.

Static libraries used in iPhone applications do not need to be code signed. Therefore, you should remove
the Code Signing Identity build setting definition from the static library targets you create. To do so:

1. Open the static library target’s Info window and display the Build pane.

2. In the Code Signing category, select the Any iPhone OS Device conditional definition for the Code Signing
Identity build setting.

3. Change the conditional definition’s value from iPhone Developer to Don’t Code Sign.

To learn more about the iPhone application architecture, see iPhone Application Programming Guide.

To develop an iPhone application, you work on an Xcode project. And you do most of your work on projects
through the project window, which displays and organizes your source files and other resources needed to
build your application. It allows you to access and edit all the pieces of your project. Figure 1-1 shows the
project window.

12 Creating an iPhone Project
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

Figure 1-1 Project window

Toolbar

Groups & Files list

Status bar

Detail view

The project window contains the following key areas for navigating your project:

 ■ Groups & Files list. Provides an outline view of your project contents. You can move files and folders
around and organize your project contents in this list. The current selection in the Groups & Files list
controls the contents displayed in the detail view.

 ■ Detail view. Shows the item or items selected in the Groups & Files list. You can browse your project’s
contents in the detail view, search them using the Search field, or sort them according to column. The
detail view helps you rapidly find and access your project’s contents.

 ■ Toolbar. Provides quick access to the most common Xcode commands.

 ■ Status bar. Displays status messages for the project. During an operation—such as building or
indexing—Xcode displays a progress indicator in the status bar to show the progress of the current task.

 ■ Favorites bar. Lets you store and quickly return to commonly accessed locations in your project. The
favorites bar is not displayed by default. To display the favorites bar, choose View > Layout > Show
Favorites Bar.

To learn more about creating projects, see “Creating Projects”.

Editing Code

The main tool you use to write your code is the Xcode text editor. This advanced text editor provides several
convenient features:

Editing Code 13
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

 ■ Header-file lookup. By Command–double-clicking a symbol, you can view the header file that declares
the symbol.

 ■ API reference lookup. By Option–double-clicking a symbol, you get access to API reference that provides
information about the symbol’s usage.

 ■ Code completion. As you type code, you can have the editor help out by inserting text for you that
completes the name of the symbol Xcode thinks you’re going to enter. Xcode does this in an unobtrusive
and overridable manner.

 ■ Code folding. With code folding, you can collapse code that you’re not working on and display only the
code that requires your attention.

For details about these and other text editor features, see “The Text Editor”.

Using Code Completion

The text editor helps you type code faster with code completion. When code completion is active, Xcode
uses both text you have typed and the context into which you have typed it to provide suggestions for
completing the token it thinks you intend to type. Code completion is not active by default.

To activate code completion:

1. Open the Xcode Preferences window.

Choose Xcode > Preferences (or press Command–,).

2. In the Code Completion section of the Code Sense pane, choose Immediate from the Automatically
Suggest pop-up menu.

3. Click OK.

As you type the name of a symbol, Xcode recognizes that symbol and offers a suggestion, as shown in Figure
1-2. You can accept suggestions by pressing Tab or Return. You may also display a list of completions by
pressing Escape.

Figure 1-2 Using code completion

14 Using Code Completion
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

To learn more about code completion, see “Completing Code” in Xcode Workspace Guide.

Accessing Documentation

During development, you may need fast access to reference for a particular symbol or high-level
documentation about API usage or an iPhone OS technology. Xcode gives you easy access to such resources
through the Research Assistant and the Documentation window.

The Research Assistant is a lightweight window, shown in Figure 1-5 (page 17), that provides a condensed
view of the API reference for the selected item, without taking your focus away from the editor in which the
item is located. This window provides an unobtrusive way to consult API reference. However, when you need
to delve deeper into the reference, the Documentation window is just a click away.

The Documentation window (Figure 1-3) lets you browse and search the developer documentation (which
includes API reference, guides, and article collections about particular tools or technologies) installed on your
computer. It provides access to a wider and more detailed view of the documentation than the Research
Assistant, for the times when you need additional help.

Figure 1-3 The Documentation window

To display the API reference for a symbol in a source file, you select the symbol in the text editor and choose
Help > Find Selected Text in API Reference (you can also Option–double-click the symbol name). This command
searches for the selected symbol in the API reference for your project’s SDK and displays it in the

Accessing Documentation 15
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

Documentation window. For example, if you select the UIFont class name in a source file and execute the
Find Selected Text in API Reference command, Xcode displays the Documentation window with the API
reference for the UIFont class, as shown in Figure 1-4.

Figure 1-4 Viewing API reference in the Documentation window

While the Documentation window is a great tool to browse the iPhone documentation library, sometimes
you may not want to take your focus away from the text editor while you write code, but need basic
information about a symbol in a condensed way. The Research Assistant provides such information in a small
and unobtrusive window.

The Research Assistant actively follows you as you move the cursor around a source file. When it recognizes
a symbol for which it finds API reference, the Research Assistant displays that reference, as shown in Figure
1-5. All you have to do is glance at the Research Assistant to get essential details about the symbol.

To display the Research Assistant, choose Help > Show Research Assistant.

16 Accessing Documentation
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

Figure 1-5 Viewing API reference in the Research Assistant

From the Research Assistant you can quickly jump to more comprehensive reference for the symbol, or even
view the header that declares it.

For more information about accessing documentation in Xcode, see Documentation Access.

Building and Running Your Application

iPhone Simulator implements the iPhone OS API, providing an environment that closely resembles the
environment devices provide. It allows you to run your applications in Mac OS X, letting you quickly test your
application’s functionality when you don’t have a device available. However, running applications in iPhone
Simulator is not the same as running them in actual devices. iPhone Simulator does not emulate device
performance: It doesn’t implement the memory constraints or processor performance of an actual device.
To get an accurate idea of how your application will perform on a user’s device, you must run the application
on a device and gather performance data using Instruments and other performance-measuring tools.

First, the simulator uses Mac OS X versions of the low-level system frameworks instead of the versions that
run on the devices. Secondly, there may be hardware-based functionality that’s unavailable on the simulator.
But, in general, the simulator is a great tool to perform initial testing of your applications.

To compile and debug your code, Xcode relies on open-source tools, such as GCC and GDB. Xcode also
supports team-based development with source control systems, such as Subversion, CVS, and Perforce.

Building your application involves the following steps:

 ■ Compiling your source files and generating your application binary.

 ■ Placing the binary in iPhone Simulator or on your device.

Xcode performs these tasks for you when you execute the Build command. See “Running Applications” (page
25) for details.

Building and Running Your Application 17
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

Measuring Application Performance

After you have tested your application’s functionality, you must ensure that it performs well on a device. This
means that the application uses the device’s resources as efficiently as possible. For example, memory is a
scarce resource; therefore, your application should maintain a small memory footprint not to impair the
performance of iPhone OS. Your application should also use efficient algorithms to consume as little power
as possible not to reduce battery life. Xcode provides two major tools to measure and tune application
performance: Instruments and Shark.

The Instruments application is a dynamic performance analysis tool that lets you peer into your code as it’s
running and gather important metrics about what it is doing. You can view and analyze the data Instruments
collects in real time, or you can save that data and analyze it later. You can collect data about your application’s
use of the CPU, memory, the file system, and the network, among other resources.

The Shark application is another tool that helps you find performance bottlenecks in your code. It produces
profiles of hardware and software performance events and shows how your code works as a whole and its
interaction with iPhone OS.

With Instruments and Shark, you can find and eliminate performance bottlenecks in your code. For more
information, see “Tuning Applications” (page 49).

Further Exploration

To learn more about the Xcode development process, see Xcode Project Management Guide.

18 Measuring Application Performance
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

The Development Process

This chapter guides you through the creation of a simple project that prints text on the iPhone screen.

Create the Project

To create the Hello World project, follow these steps:

1. Launch the Xcode application, located in <Xcode>/Applications.

2. Choose File > New Project.

3. Select the Window-Based Application template and click Choose.

4. Name the project HelloWorld and choose a location for it in your file system.

5. Add the MyView class to the project.

a. Choose File > New File.

Create the Project 19
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Tutorial: Hello, World!

b. Select the Cocoa Touch UIView subclass template and click Next.

c. In the File Name text field, enter MyView.m.

d. Select the “Also create "MyView.h"” option and click Finish.

6. Choose the active SDK for your project.

If you have a development device plugged in at the time you create the project, Xcode sets the active
SDK to build for your device. Otherwise, it sets it to build for iPhone Simulator.

20 Create the Project
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Tutorial: Hello, World!

To set the active SDK, chose an item from the Project > Set Active SDK submenu or the Overview toolbar
menu in the project window.

Write the Code

In Xcode, the text editor is where you spend most of your time. You can write code, build your application,
and debug your code. Let’s see how Xcode assists you in the first task.

First, modify the HelloWorldAppDelegate class to use the MyView class:

1. In the Groups & Files list, select the HelloWorld group.

2. In the detail view, double-click HelloWorldAppDelegate.m.

3. In the HelloWorldAppDelegate editor window:

a. Add the following code line below the existing #import line.

#import "MyView.h"

b. Add the following code lines to the applicationDidFinishLaunching: method, below the
override-point comment.

MyView *view = [[MyView alloc] initWithFrame:[window frame]];
[window addSubview:view];

Write the Code 21
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Tutorial: Hello, World!

[view release];

After making these changes, the code in the HelloWorldAppDelegate.m file should look like this:

#import "HelloWorldAppDelegate.h"
#import "MyView.h"

@implementation HelloWorldAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 // Override point for customization after app launch
 MyView *view = [[MyView alloc] initWithFrame:[window frame]];
 [window addSubview:view];
 [view release];

 [window makeKeyAndVisible];
}

- (void)dealloc {
 [window release];
 [super dealloc];
}

@end

Listing 2-1 shows the code that draws “Hello, World!” in the window. Add the highlighted code lines to the
drawRect: method in the MyView.m file.

Listing 2-1 Method to draw “Hello, World!” in a view

- (void) drawRect:(CGRect) rect {
 NSString *hello = @"Hello, World!";
 CGPoint location = CGPointMake(10, 20);
 UIFont *font = [UIFont systemFontOfSize:24];
 [[UIColor whiteColor] set];
 [hello drawAtPoint:location withFont:font];
}

If you turned on code completion (as described in “Using Code Completion” (page 14)), as you type symbol
names the text editor suggests completions for the symbol names it recognizes. For example, as you type
CGPointM, the text editor suggests the completion shown in Figure 1-2 (page 14). You can take advantage
of completion here by accepting the suggested completion and jumping to the parameter placeholders:

1. Jump to the first parameter by choosing Edit > Select Next Placeholder (or press Control–/), and type
10.

The Select Next Placeholder command moves you among the arguments in function or method calls
that the text editor suggests as completions to the text you’re typing.

2. Jump to the second parameter and type 20.

3. Enter the semicolon (;) at the end of the line and press Return.

22 Write the Code
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Tutorial: Hello, World!

Run the Application

To build and run the Hello World application, choose Build > Build and Run (or click the Build and Go toolbar
item in the project window). If there are no build errors, Xcode installs the application in iPhone Simulator
or your device (depending on the active SDK setting).

Further Exploration

Now that you learned how to write the standard Hello, World! application for iPhone OS, you can experiment
with HelloWorld, the Cocoa Touch version of this ubiquitous application.

For a step-by-step tutorial in developing a more complex application, see Your First iPhone Application.

Run the Application 23
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Tutorial: Hello, World!

24 Further Exploration
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Tutorial: Hello, World!

When you’re ready to run or debug your application, you build it using the Xcode build system. If there are
no build errors, you can run it in iPhone Simulator or on a device.

The iPhone SDK comprises two SDK families: The iPhone Simulator SDK and the iPhone Device SDK.

 ■ iPhone Simulator SDK: These SDKs build applications that run in the iPhone Simulator.

 ■ iPhone Device SDK: These SDKs build applications that run in a device.

These are steps you follow to build and run applications:

1. Set the application’s target iPhone OS release.

2. Set the active SDK.

3. Set the active build configuration.

4. Build the application.

5. Run the application.

This chapter describes each of the steps required to run or debug your application.

Setting Your Application’s Target iPhone OS Release

Each release of iPhone OS (and its corresponding iPhone SDK) includes features and capabilities not present
in earlier releases. As new releases of the OS are published, some users may upgrade immediately while other
users may wait before moving to the latest release. You can take one of two strategies, depending on the
needs of your application and your user base:

 ■ Target the latest iPhone OS release. Targeting the latest release allows you to take advantage of all
the features available in the latest version of iPhone OS. However, this approach may offer a smaller set
of users capable of installing your application on their devices because your application cannot run on
iPhone OS releases that are earlier than the target release.

 ■ Target an earlier iPhone OS release. Targeting a noncurrent release lets you publish your application
to a wide user base (because your application runs on the target OS release and later releases), but may
limit the iPhone OS features your application can use.

You specify the default target iPhone OS release for your project by choosing the corresponding SDK from
the Base SDK for All Configurations pop-up menu in the General pane of the project Info window.

Setting Your Application’s Target iPhone OS Release 25
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Running Applications

You can override the the base SDK setting for each build configuration (such as Release or Debug) with the
iPhone OS Deployment Target build setting.

When you build your application, your target iPhone OS–release selection is reflected in the
MinimimOSVersion entry in the application’s Info.plist file.

When you publish your application to the App Store, the store indicates the iPhone OS release on which your
application can run based on your application’s MinimumOSVersion property.

To learn more about build settings, see “Editing Build Settings” in Xcode Project Management Guide.

Setting the Active SDK

The active SDK tells Xcode what release of the iPhone SDK to use to build your application the next time
you perform a build operation and whether to run the application in iPhone Simulator or on a device.

There are two places you can set the active SDK:

26 Setting the Active SDK
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Running Applications

 ■ In the Set Active SDK submenu in the Project menu

 ■ In the Overview pop-up menu in the toolbar

Important: If the iPhone OS release is earlier than the application’s target iPhone OS release, Xcode displays
build warnings when it detects that your application is using a feature that’s not available in the target OS
release. See “Setting Your Application’s Target iPhone OS Release” (page 25) for more information.

You must also ensure that the symbols you use are available in the application’s runtime environment using
cross-development techniques. These techniques are described—in Mac OS X terms—in Cross-Development
Programming Guide.

After testing your application in iPhone Simulator, you must test it on an iPhone OS–based device to measure
and tune its performance. To be able to run your application on a device, you must be a member of the
iPhone Developer Program; see “Preparing Devices for Development” (page 35) for details.

When changing the active SDK from iPhone Simulator SDK to iPhone Device SDK, keep in mind that the
former provides a runtime environment for Mac OS X. Some of the key frameworks iPhone Simulator uses
are tailored for Mac OS X. Moving to the iPhone Device SDK means that instead of Mac OS X–based frameworks
and libraries, your application links against device-specific frameworks and libraries. Some of these frameworks
and libraries are implemented differently or are not available for the device; for example, the
ApplicationServices framework.

If your code imports iPhone Simulator SDK headers—the headers in the
<Xcode>/Platforms/iPhoneSimulator.platform/SDKs/.../usr/include directory—directly, you
may encounter build errors after switching to the iPhone Device SDK. You may need to conditionalize your
code so that the #import/#include statements that use SDK headers are compiled only when building
for the appropriate platform.

See “Conditional Compilation and Linkage” (page 55) for details about building your application so that it
can run unchanged both in iPhone Simulator and on your device.

Setting the Active Build Configuration

A build configuration tells Xcode the purpose of the built product. Out of the box, Xcode lets you perform
Debug and Release builds of your application. Debug builds include information and features that aid in
debugging your application. Release builds produce smaller and faster binaries. During early and midlevel
development, you should use the Debug configuration because it provides the best debugging experience.
You should use the Release configuration in the last stages of development to measure and analyze your
application’s performance.

When you start a build process, Xcode uses the active build configuration to build your application. There
are two places you can set the active build configuration:

 ■ In the Set Active Build Configuration submenu in the Project menu

 ■ In the Overview pop-up menu in the toolbar

To learn more about the Release and Debug configurations, see Building a Product.

Setting the Active Build Configuration 27
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Running Applications

Building Your Application

To start the build process, choose Build > Build.

The status bar in the project window indicates that the build was successful or that there are build errors or
warnings. You can view build errors and warnings in the text editor or the project window.

Important: If you want your application to run in iPhone Simulator and on your device, you may need to
conditionalize code compilation and framework linkage to adapt to the differences between the iPhone
Simulator SDK and the iPhone Device SDK. See “Conditional Compilation and Linkage” (page 55) for details.

When building for iPhone Simulator, the generated binary runs only on the targeted iPhone Simulator release.
It doesn’t run on earlier or later releases of the simulator.

iPhone OS–based devices support two instruction sets, ARM and Thumb. Xcode uses Thumb instructions by
default because using Thumb typically reduces code size by about 35 percent relative to ARM. Applications
that have extensive floating point code might perform better if they use ARM instructions rather than Thumb.
You can turn off Thumb for your application by turning off the Compile for Thumb build setting.

If the build completes successfully, you can proceed to run your application as described in “Running Your
Application” (page 28).

If you encounter compilation errors, use the techniques described in “Viewing Errors and Warnings” in Xcode
Project Management Guide to fix them.

When building for a device, if Xcode has trouble installing your application onto your device due to a problem
with your provisioning profile, ensure that your provisioning profile is properly configured in the Program
Portal. If necessary reinstall it on your computer and device, as described in “Preparing Devices for
Development” (page 35).

To learn about the structure of iPhone application binaries, see “The Application Bundle” in iPhoneApplication
Programming Guide.

Running Your Application

When you run your application, Xcode installs it on the iPhone Simulator or a device (depending on the
active SDK) and launches it.

If you have more than one device attached to your computer, you can choose the device onto which Xcode
installs the built application using the Project > Set Active Executable menu.

Once running, you can test that your application performs as you intend using all the capabilities of your
device. You should especially ensure that your application uses the device’s resources—CPU, memory, battery,
and so on—as efficiently as possible. See “Tuning Applications” (page 49) for more information.

To run your application, choose Run > Run or Run > Debug.

Xcode launches your application on the iPhone Simulator or a device.

28 Building Your Application
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Running Applications

Troubleshooting: If you get the “Failed to start remote debugserver” while trying to debug your application
on your device, your device may not be running the iPhone OS release that corresponds to your iPhone SDK.
For more information, see “Restoring System Software” (page 40).

Streamlining the Build-and-Run Workflow

In addition to the Build, Run, and Debug commands, Xcode provides convenience commands that perform
these operations as a single task. These commands are Build and Run and Build and Debug.

You can also repeat the last build task with the Build and Go command, which you can execute from the
Build menu.

Managing Application Data

As you develop your application, you might need to rely on user settings and application data to remain on
the iPhone Simulator or your development device between builds. Xcode doesn’t remove any user settings
or application data as you build your project and install the application on its host. But you may need to
erase that information as part of testing your application the way users will use it. To do so, remove the
application from the Home screen. See “Uninstalling Applications” (page 32) for details.

Further Exploration

To learn more about using Xcode to build and run applications, see Building a Product.

Streamlining the Build-and-Run Workflow 29
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Running Applications

30 Further Exploration
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Running Applications

The iPhone simulation environment lets you build and run your iPhone application on your computer. You
use the simulator environment to:

 ■ Find and fix major problems in your application during design and early testing.

 ■ Learn about the Xcode development experience and the iPhone development environment before
becoming a member of the iPhone Developer Program.

 ■ Lay out and test your application’s user interface.

 ■ Measure your application’s memory usage before carrying out detailed performance analysis on iPhone
OS–based devices.

A major part of the iPhone simulation environment is the iPhone Simulator application. This application
presents the iPhone user interface in a window on your computer. The application provides several ways of
interacting with it using your keyboard and mouse to simulate taps and device rotation.

iPhone OS supports the Objective-C runtime introduced in Mac OS X v10.5 except for access to Objective-C
class metadata. This means that, if your application accesses Objective-C class metadata, it may not run on
the iPhone Simulator. See Objective-C 2.0 Runtime Reference for more information.

The following sections describe the ways in which you use your computer’s input devices to simulate the
interaction between users and their devices. They also show how to uninstall applications from the simulator
and how to reset the contents of the simulator.

Manipulating the Hardware

The iPhone Simulator lets you simulate most of the actions a user performs on their device. You can carry
out these hardware interactions through the iPhone Simulator Hardware menu:

 ■ Rotate Left. Rotates the simulator to the left.

 ■ Rotate Right. Rotates the simulator the right.

 ■ Home. Takes the simulator to the Home screen.

 ■ Lock. Locks the simulator.

 ■ Simulate Memory Warning. Sends the frontmost application low-memory warnings. For information
on how to handle low-memory situations, see “Observing Low-Memory Warnings” in iPhone Application
Programming Guide.

 ■ Toggle In-Call Status Bar. Toggles the status bar between its normal state and its in-call state. The status
bar is taller in its in-call state than in its normal state. This command shows you how your application’s
user interface looks when the user launches your application while a phone call is in progress.

Manipulating the Hardware 31
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Using iPhone Simulator

Performing Gestures

Table 4-1 lists gestures you can perform on the simulator (see iPhone Human Interface Guidelines for gesture
information).

Table 4-1 Performing gestures in iPhone Simulator

Desktop actionGesture

Click.Tap

Hold down the mouse button.Touch and hold

Double click.Double tap

1. Place the pointer at the start position.

2. Hold the mouse button.

3. Move the pointer in the swipe direction and release the mouse button.

Swipe

1. Place the pointer at the start position.

2. Hold the mouse button.

3. Move the pointer quickly in the flick direction and release the mouse button.

Flick

1. Place the pointer at the start position.

2. Hold down the mouse button.

3. Move the pointer in the drag direction.

Drag

1. Hold down the Option key.

2. Move the circles that represent finger touches to the start position.

3. Hold down the mouse button and move the circles to the end position.

Pinch

Installing Applications

Xcode installs applications in iPhone Simulator automatically when you build your application using the
iPhone Simulator SDK. See “Running Applications” (page 25) for details.

In the iPhone Simulator, you can install only applications that you build using the iPhone Simulator SDK. You
cannot install applications from the App Store in the simulator.

Uninstalling Applications

To uninstall applications you have installed on the simulator use the same method used to uninstall
applications from devices:

32 Performing Gestures
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Using iPhone Simulator

1. Place the pointer over the icon of the application you want to uninstall and hold down the mouse button
until the icon starts to wiggle.

2. Click the icon’s close button.

3. Click the Home button to stop the icon wiggling.

Resetting Content and Settings

To set the user content and settings of the simulator to their factory state and remove the applications you
have installed, choose iPhone Simulator > Reset Content and Settings.

Core Location Functionality

The relocation reported by the CoreLocation framework in the simulator is fixed at the following coordinates
(accuracy 100 meters), which correspond to 1 Infinite Loop, Cupertino, CA 95014.

 ■ Latitude: 37.3317 North

 ■ Longitude: 122.0307 West

iPhone Simulator File System on Host

iPhone Simulator stores the User domain of the iPhone OS file system in your home directory at:

~/Library/Application Support/iPhone Simulator/User

The User domain comprises all user data iPhone OS stores including third-party application binaries, system
databases (such as the Address Book and Calendar databases), application preferences, and so on. This
location is also known as <iPhoneUserDomain>.

iPhone Simulator stores system application preferences files in
<iPhoneUserDomain>/Library/Preferences.

Third-party–application preferences files are stored in
<iPhoneUserDomain>/Applications/<app_UUID>Library/Preferences.

Further Exploration

To learn about the frameworks available in iPhone Simulator, see iPhone OS Frameworks.

Resetting Content and Settings 33
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Using iPhone Simulator

34 Further Exploration
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Using iPhone Simulator

With iPhone Simulator you can start developing iPhone applications without using iPhone OS–based devices.
This way you can familiarize yourself with the API and development workflows used to develop applications.
However, you must always test your applications on actual devices before publishing them to ensure that
they run as intended and to tune them for performance on actual hardware.

As a member of the Apple Developer Connection (ADC) you can log in to the iPhone Dev Center, which
provides access to iPhone developer documentation and lets you build iPhone applications that run in iPhone
Simulator. (To become an ADC member, visit http://connect.apple.com.) An ADC membership, however,
doesn’t allow you to run applications on iPhone OS–based devices. To do so you must be a member of the
iPhone Developer Program.

The iPhone Developer Program provides the tools and resources you need to run applications on
development devices and distribute them to iPhone OS users. To become a member of the iPhone Developer
Program, visit http://developer.apple.com/iphone/program.

After becoming an iPhone Developer Program member, you’ll have access to the Program Portal in the iPhone
Dev Center. The Program Portal is a restricted-access area of the iPhone Dev Center that allows you to
configure devices to test your iPhone applications on them.

This chapter shows how to add your development devices to the iPhone Developer Program and how to
configure your computer for development. It also shows how to use the Xcode Organizer window to view
your application’s console logs or crash information, or to take screenshots of your application as it runs. The
chapter also describes how to safeguard the digital identifications required to install applications in
development in devices.

Preparing Devices for Development

In order to test your application on a device, you must configure your computer and your device for iPhone
OS development. This chapter presents an overview of the process and provides detailed information in the
sections that follow.

In preparing your device for development, you create or obtain the following digital assets:

 ■ Certificate signing request. A certificate signing request (CSR) contains personal information used to
generate your development certificate. You submit this request to the iPhone Developer Program Portal.

The Program Portal is visible only to members of the iPhone Developer Program.

Note: The Program Portal is visible only to members of the iPhone Developer Program. To become an
iPhone Developer Program member, visit http://developer.apple.com/iphone/program.

 ■ Development certificate. A development certificate identifies an iPhone application developer. After
the CSR is approved, you download your developer certificate from the portal and add it to your Keychain.

Preparing Devices for Development 35
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

http://connect.apple.com
http://developer.apple.com/iphone/program
http://developer.apple.com/iphone/program

When you build your iPhone application with Xcode, it looks for your development certificate in your
keychain; if it finds the certificate, Xcode signs your application, otherwise, it reports a build error.

If your development certificate is missing from your keychain, you download it again from the Program
Portal. Then, follow the instructions in “Adding Your Development Certificate to Your Keychain” (page
39).

 ■ Provisioning profile. A provisioning profile associates one or more development certificates, devices,
and an iPhone application ID (a unique identifier for the iPhone applications you or your organization
develop under an iPhone Developer Program contract).

To be able to install iPhone applications signed with your development certificate on a device, you must
install at least one provisioning profile on the device. This provisioning profile must identify you (through
your development certificate) and your device (by listing its unique device identifier). If you’re part of
an iPhone developer team, other members of your team, with appropriately defined provisioning profiles,
may run applications you build on their devices.

Figure 5-1 illustrates the relationship between these digital assets.

Figure 5-1 Preparing computers and devices for iPhone development

Provisioning Profile
(is stored on device)Development Certificate

(is stored on computer) Development certificates

Device identifiers

App ID

Digital identity

Public key

Computer

Certificate Signing Request

Keychain

Xcode Organizer

iPhone Developer Program Portal

These are the requirements your computer and your development device must meet so that you can build
iPhone applications that run on your device:

 ■ Your computer must have your development certificate in your keychain.

 ■ Your device must contain at least one provisioning profile that contains your developer certificate and
identifies your device.

 ■ Your development device must have iPhone OS 2.0 or later installed.

These are the steps you must follow to configure your computer and development device for iPhone
development:

36 Preparing Devices for Development
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

1. Specify your application ID.

2. Register your device with the Program Portal.

3. Install iPhone OS on your device.

4. Obtain your development certificate.

5. Add your development certificate to your keychain.

6. Obtain your provisioning profile.

7. Add your provisioning profile to Xcode.

8. Install your provisioning profile on your device.

The following sections describe these tasks in detail.

Setting Your Application ID

After becoming a member of the iPhone Developer Program, you must set your application ID in the Program
Portal. iPhone OS uses application IDs to identify the applications you create. An iPhone application ID is
made up of a ten-character bundle seed identifier and a bundle identifier. The bundle identifier can identify
one application or a group of applications.

This is an example of an iPhone application ID that identifies a single application, named MyApp:

GFWOTNXFIY.com.mycompany.MyApp

Using an asterisk instead of an application name in the bundle identifier, as shown below, lets you share a
single application ID between a set of related applications.

GFWOTNXFIY.com.mycompany.myappsuite.*

Note: Regardless of the format used by the iPhone application ID, application bundles must always include
the application name in their bundle identifier. To learn more about the bundle identifier, see “The Application
Bundle” in iPhone Application Programming Guide.

Registering Your Device with the Program Portal

To register your development device with the portal:

1. Launch Xcode.

2. Choose Window > Organizer to open the Organizer window.

3. Plug-in your device and select it in the devices list.

Preparing Devices for Development 37
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

4. Copy your device UDID from the Identifier text field in the Summary pane, as shown in Figure 5-2 (page
38).

Figure 5-2 Organizer: Copying your device identifier

5. Go to the portal to register your device or have your team admin register your device into the program.

Installing iPhone OS on Your Device

To run applications you develop using the iPhone SDK, your device must be running iPhone OS 2.0 or later.

To learn how to install iPhone OS on your device, see “Restoring System Software” (page 40).

Obtaining Your Development Certificate

Xcode uses your development certificate to code-sign your application before it uploads it to your device
for testing.

38 Preparing Devices for Development
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

Start by generating a certificate signing request (CSR) on your computer:

1. Launch Keychain Access, located in /Applications/Utilities.

2. Choose Keychain Access > Certificate Assistant > Request a Certificate From a Certificate Authority.

3. In the Certificate Information window:

a. In the User Email Address field, enter your email address.

b. In the Common Name field, enter your name.

c. In the “Request is” group, select the “Saved to disk” option.

d. Select “Let me specify key pair information.”

e. Click Continue.

f. Choose your desktop as the location for the CSR file.

g. In the Key Pair Information pane, choose 2048 as the key size and RSA as the algorithm.

The Certificate Assistant saves a CSR file to your desktop.

This process creates a public/private key pair. The public key is stored in your development certificate.
Your private key is stored in your keychain. You must ensure that you don’t lose your private key and
that only you have access to it. Therefore, it’s a good idea to backup your private key. Backing up your
private key may also help if you need to use more than one computer to develop iPhone applications.
See “Managing Your Digital Identifications” (page 43) for more information.

4. Open the CSR file in a text editor and copy the entire text, including the enclosing tags.

5. Submit the CSR to the Program Portal.

After the CSR is approved by your team admin, you can download your development certificate from the
Program Portal. As with your private key, you should backup your development certificate in case you need
to develop iPhone applications on another computer. See “Managing Your Digital Identifications” (page 43)
for details.

Adding Your Development Certificate to Your Keychain

Your development certificate must be in your keychain so that Xcode can digitally sign your iPhone
applications.

To add your development certificate to your keychain, in your computer:

1. Open your development certificate with the Keychain Access application by double-clicking it or dragging
it to the Keychain Access application icon.

2. In the Add Certificates dialog, ensure Keychain is set to “login” and click OK.

Preparing Devices for Development 39
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

Obtaining Your Provisioning Profile

To obtain your provisioning profile:

1. Have your team admin create your provisioning profile in the Program Portal.

2. Download your provisioning profile from the Program Portal.

Adding Your Provisioning Profile to the Xcode Organizer

You use the Organizer to add provisioning profiles to your development device.

To add a provisioning profile to Xcode:

1. Drag the provisioning profile file to the Xcode icon in the Dock.

2. Restart Xcode.

After this operation, the~/Library/MobileDevice/Provisionsdirectory should contain your provisioning
profile and it should also appear in the Provisioning section of the Summary pane in the Organizer.

Installing Your Provisioning Profile on Your Device

After adding your provisioning profile to the Organizer, you can add it to your device:

1. Open the Organizer window.

Your provisioning profile should appear in the Provisioning section of the Summary pane. If you don’t
see it there, follow the instructions in “Adding Your Provisioning Profile to the Xcode Organizer” (page
40).

2. Plug in your device and select it in the devices list.

3. Click the checkbox next to the provisioning profile to install it on your device.

Once installed, a checkmark should appear in the checkbox next to the provisioning profile. If the
checkmark doesn’t appear, ensure that the provisioning profile includes your device UDID, your
development certificate, and a valid application ID. Go to the Program Portal or contact your team admin
to verify that the provisioning profile contains this information. You need to go back to the “Obtaining
Your Provisioning Profile” (page 40) step if changes are made to your profile.

Restoring System Software

When you develop applications using a particular version of the iPhone SDK, such as iPhone SDK 2.0, you
should test those applications on devices running the iPhone OS version the SDK targets, such as iPhone OS
2.0.

40 Restoring System Software
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

You can download seed releases of iPhone OS that correspond to seed releases of the iPhone SDK from the
iPhone Dev Center.

To restore a device:

1. Launch Xcode and open the Organizer window.

2. Plug the device into your computer.

3. Select the device in the Devices list.

4. From the Software Version pop-up menu, choose the version of iPhone OS you want to place on the
device.

If the version you want to install is not listed in the Software Version pop-up menu:

a. Download the iPhone OS release you want to install on the device from http://developer.apple.com.

Important: You must be a member of the iPhone Developer Program to be able to download
iPhone OS.

b. From the Software Version pop-up menu, choose Other Version.

c. Navigate to the disk image containing the iPhone OS developer software and click Open.

Xcode extracts the iPhone OS software from the disk image. You can dispose of the disk image you
downloaded.

d. From the Software Version pop-up menu, choose the newly downloaded iPhone OS version.

5. Click Reset iPhone or Reset iPod, depending on your device’s type.

6. Use iTunes to name your device.

Running Applications on a Device

After following the instructions in “Preparing Devices for Development” (page 35) and “Restoring System
Software” (page 40) (if necessary) you can run your application on your development device.

You tell Xcode that you want to build your application for a device and that you want to run it on a connected
device by setting the active SDK to an iPhone Device SDK release. See “Setting the Active SDK” (page 26)
for details.

Running Applications on a Device 41
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

http://developer.apple.com

Viewing Console and Crash Logs

The iPhone OS frameworks, such as UIKit, produce log entries to the console to indicate, among other things,
when an unexpected event occurs. You can read those messages using the Console application in
/Application/Utilities. You can produce console messages in your iPhone applications, too. One way
to produce console logs is to use the NSLog class. In addition to the Xcode debugger, console logs may help
you analyze your application’s logic and track down bugs.

When running your application on the iPhone Simulator, you can access its console logs in the Xcode Console
window. But when you run the application on your development device, you must use the Xcode Organizer
to access log entries.

To view a device’s console output:

1. Open the Organizer window.

2. Select the device whose console log you want to view.

3. Click Console.

You can use the search field to filter log entries. You can also save the log to a file.

The Crash Log pane in the Organizer contains information about application crashes. You may have to unplug
your device and plug it in again to refresh the crash list.

42 Viewing Console and Crash Logs
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

Capturing Screen Shots

Screen shots help to document your application. This is also how you create your application’s default image,
which iPhone OS displays when the user taps your application’s icon. You can capture screen shots of your
device’s screen from the Organizer or directly on your device.

To capture a screen shot from the Organizer:

1. Configure your application’s screen for the screen shot.

Depending on your application’s workflow, you may need to place breakpoint in your code and run your
application until it reaches that point.

2. Open the Organizer window, select your device, and click Screenshots.

3. Click Capture.

To make that screen shot your application’s default image, click Save As Default Image.

If you have iPhoto installed on your computer, you may capture screen shots directly on your device and
import them into your iPhoto library.

To capture a screen shot on your device, press the the Lock and Home buttons simultaneously. Your screen
shot is saved in the Saved Photos album in the Photos application.

Note: Although the default image includes the status bar as it looked when the screen shot was captured,
iPhone OS replaces it with the current status bar when your application launches.

Managing Your Digital Identifications

When you create a certificate signing request (CSR) to obtain your development certificate, you generated
a public/private key pair. The public key is included in your development certificate. The private key is stored
in your keychain. With these two items in your computer, Xcode can code-sign the iPhone applications you
build with it. If you need to use another computer to develop iPhone applications, you must transfer these
items to the other computer and add them to your keychain.

This section shows how to export your private key from your keychain in your development computer, store
your private key and development certificate in a protected disk image, and add both items to a second
computer for iPhone development.

To export your private key from your keychain:

1. Launch Keychain Access.

2. In the category list, select Keys.

3. Select the private key you use for iPhone development.

4. Choose Export from the private key shortcut menu.

Capturing Screen Shots 43
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

(To display the private key shortcut menu, Control-click the selected row.)

5. Enter a password to protect the private key.

6. Select a location for the private key and use the Personal Information Exchange (.p12) format for the
file.

To generate a protected disk image containing your private key and development certificate:

1. Place your private key and development certificate file in a newly created directory, named iPhone
Developer Identifications.

2. Launch the Disk Utility application, located in /Applications/Utilities.

3. Choose File > New > Disk Image from Folder.

4. Choose the iPhone Developer Identifications directory you created earlier.

5. Select a location for the new protected disk image.

6. From the Encryption pop-up menu, choose “256-AES encryption”.

7. In the dialog that appears, enter a password for the disk image.

You should deselect the “Remember password in my keychain” option. Otherwise, anybody with access
to your account may open the disk image.

8. Place the protected disk image in a secure location.

Now, when you need to develop iPhone applications on another computer:

1. Copy the iPhone Developer Identifications.dmg disk-image file to the second computer.

2. On the second computer, open the disk image.

3. Import the private key into your keychain:

a. Launch Keychain Access.

b. Choose File > Import Items.

c. Choose the private key file to import.

4. Add the development certificate to your keychain. See “Adding Your Development Certificate to Your
Keychain” (page 39) for details.

44 Managing Your Digital Identifications
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Managing Devices

This chapter describes the Xcode debugging facilities.

General Debugging Tasks

Xcode provides several debugging environments you can use to find and squash bugs in your code:

 ■ The text editor. The text editor allows you to debug your code right in your code. It provides most of
the debugging features you need. You can

 ❏ Add and set breakpoints

 ❏ View your call stack per thread

 ❏ View the value of variables by hovering the mouse pointer over them

 ❏ Execute a single line of code

 ❏ Step in to, out of, or over function or method calls

Debugger strip

Debugger datatip

Gutter

General Debugging Tasks 45
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

 ■ The Debugger window. When you need to perform more focused debugging, the Debugger window
provides all the debugging features the text editor provides using a traditional interface. This window
provides lists that allow you to see your call stack and the variables in scope at a glance.

Toolbar

Status bar

Thread list

Variable list

Text editor

 ■ The GDB console. A GDB console window is available for text-based debugging.

For more information about the Xcode debugging facilities, see Xcode Debugging Guide.

Memory Leaks

If you fix a leak and your program starts crashing, your code is probably trying to use an already-freed object
or memory buffer. To learn more about memory leaks, see Finding Memory Leaks.

You can use the NSZombieEnabled facility to find the code that accesses freed objects. When you turn on
NSZombieEnabled, your application logs accesses to deallocated memory, as shown here:

2008-10-03 18:10:39.933 HelloWorld[1026:20b] *** -[GSFont ascender]: message sent to
deallocated instance 0x126550

To activate the NSZombieEnabled facility in your application:

1. Choose Project > Edit Active Executable to open the executable Info window.

2. Click Arguments.

3. Click the add (+) button in the “Variables to be set in the environment” section.

4. Enter NSZombieEnabled in the Name column and YES in the Value column.

5. Make sure that the checkmark for the NSZombieEnabled entry is selected.

46 Memory Leaks
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

For more information about configuring executable environments, see “Configuring Executable Environments”
in Xcode Project Management Guide.

Memory Leaks 47
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

48 Memory Leaks
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

Optimizing your application’s performance is an important phase of the development, more so in iPhone
OS–based devices, which, although powerful computing devices, do not have the memory or CPU power
that desktop or portable computers possess. You also have to pay attention to your application’s battery
use, as it directly impacts your customer’s battery-life experience.

These chapter describes Instruments and Shark, the tools you use to measure and tune your application’s
performance.

The Instruments Application

The Instruments application lets you gather a variety of application performance metrics, such as memory
and network use. You can gather data from iPhone applications running in iPhone Simulator or on devices.

It is important that your iPhone applications use the resources of iPhone OS–based devices as efficiently as
possible to provide a compelling experience for you customers. For example, your application should not
use resources in a way that makes the application feel sluggish to users or drains their batteries too quickly.
Applications that use too much memory run slowly. Applications that rely on the network for their operation
must use it as sparingly as possible because powering up the radios for network communications is a significant
drag on the battery.

The Instruments application provides an advanced data gathering interface that lets you know exactly how
your application uses resources, such as the CPU, memory, file system, and so on.

Instruments uses software-based data-gathering tools, known as instruments, to collect performance data.
An instrument collects a specific type of data, such as network activity or memory usage. You find which
instruments are available for iPhone OS in the Instruments Library.

Although most iPhone applications run in iPhone Simulator and you can test most design decisions there,
the simulator does not emulate a device, in particular it doesn’t attempt to replicate a device’s performance
characteristics such as CPU speed or memory throughput. To effectively measure your application’s
performance as users may use it on their devices, you must use an iPhone or iPod touch. That’s because only
on a device can you can get an accurate representation of the runtime environment (in terms of processor
speed, memory limitations, specialized hardware, and the like).

These are some limitations of iPhone Simulator:

 ■ Maximum of two fingers. If your application’s user interface can respond to touch events involving
more than two fingers, you can test that capability only on actual devices.

 ■ Accelerometer. Although you can access your computer’s accelerometer (if it has one) through the UIKit
framework, its readings will differ from the accelerometer readings on a device. This discrepancy stems
largely from the different positioning of the screen in relation to the rest of the hardware between
computers and iPhone OS–based devices.

The Instruments Application 49
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Tuning Applications

 ■ OpenGL ES. OpenGL ES uses renderers on devices that are slightly different from those it uses in iPhone
Simulator. For this reason, a scene on the simulator and the same scene on a device may not be identical
at the pixel level. See “Drawing with OpenGL ES” in iPhone Application Programming Guide for details.

To measure your application’s performance on a device:

1. Build and run your application on the device as described in “Running Applications” (page 25).

2. Launch Instruments.

The Instruments application is located at <Xcode>/Applications. (<Xcode> refers to the installation
location of the development tools.)

3. Choose a template, such as Activity Monitor, to create the trace document.

A trace document contains one or more instruments that collects data about a process.

4. From the Default Target pop-up menu in the toolbar, select the iPhone OS–based device containing the
application from which you want to collect performance data.

5. Add or remove instruments from the trace document to collect the desired data.

6. Use the Default Target pop-up menu, to launch or attach to the target application.

7. Click Record to start collecting data and use your application, exercising the areas you want to examine.

To learn more about measuring and analyzing application performance, see Instruments User Guide. This
document provides general information about using Instruments.

The Shark Application

To complement the performance data Instruments collects, the Shark application lets you view system-level
events, such as system calls, thread-scheduling decisions, interrupts, and virtual memory faults. You can see
how your code’s threads interact with each other and how your code interacts with iPhone OS.

When performance problems in your code are more related to the interaction between your code, iPhone
OS, and the hardware architecture of the device, you can use Shark to get information about those interactions
and find performance bottlenecks.

For information about using Shark with your iPhone applications, see Shark User Guide.

50 The Shark Application
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Tuning Applications

After testing and tuning your application yourself or with the assistance of your teammates, it’s always a
good idea to perform wider testing with a representative sample of your application’s potential users. Such
testing may reveal issues that surface only with particular usage patterns. Incorporating a few nondeveloper
users in your testing strategy lets you expose your application to a variety of usage styles, and, if such usage
produces crashes in your application, allows you to collect the crash reports (also known as crash logs) from
those users to help you resolve those execution problems.

An iPhone application in development can run only on devices with provisioning profiles generated by the
application developer. As iPhone Developer Program members, you and your fellow team members install
these files on your devices as part of your development process. To include users that are not part of your
team (also known as testers) in your testing strategy, you must add them as part of your team in the Program
Portal and issue them test provisioning profiles (also known as ad-hoc provisioning profiles), which allow
them to install on their devices applications that have not been published to the App Store.

Figure 8-1 illustrates the process of adding users as testers and delivering your test application to them.

Figure 8-1 Adding testers to your team

Tester

iTunes

Developer Program Portal

Tester DeviceTester device ID Tester device ID Tester device

Tester
provisioning profile

Test app ID

Tester device

Development
certificate

Tester
provisioning profile

Test app archive

Test application

Tester
provisioning profile

Test app archive

Test application

Tester
provisioning profile

51
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Publishing Applications for Testing

To help testers obtain the information you need to add them to your testing program and to show them
how to send you crash logs, you can send them the information in “Instructions for Application Testers” (page
61).

Important: To add testers to your team, you must be a member of the iPhone Developer Program. See
“Managing Devices” (page 35) for details.

The remainder of this chapter describes the steps you need to perform to add testers to your team and shows
how to add symbol information to their crash logs, also known as symbolicating.

Adding Testers to Your Team

To add an iPhone OS user to your team as a tester:

1. Obtain the tester’s device ID.

The easiest way to obtain this information is through email. Have your tester follow the instructions for
sending their device ID to developers in “Sending Your Device ID to Developers” (page 61).

2. Add the tester’s device ID to the Program Portal.

3. Generate the tester’s provisioning profile in the Program Portal.

You must select a development certificate, application ID, and only the tester’s device name.

Adding the iTunes Artwork to Your Application

Test versions of your application should contain artwork iTunes uses to identify your application. Otherwise,
when users add your application to their iTunes library, iTunes uses generic artwork for it, as shown in Figure
8-2.

52 Adding Testers to Your Team
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Publishing Applications for Testing

Figure 8-2 Generic iTunes artwork for test applications

The iTunes artwork your testers see should be your application’s icon. This artwork must be a 512 x 512 JPEG
or PNG file named iTunesArtwork. Note that the file must not have an extension.

After generating the file of your application’s icon, follow these steps to add it to your application:

1. Open your project in Xcode.

2. In the Groups & Files list, select the Resources group.

3. Choose Project > Add to Project, navigate to your iTunesArtwork file, and click Add.

4. In the dialog that appears, select the ”Copy items” option and click Add.

Distributing Your Application to Testers

To send your application to a tester:

1. Build your application using the Release build configuration.

Distributing Your Application to Testers 53
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Publishing Applications for Testing

Remember to keep the binary and its corresponding dSYM file on your file system (copy them to a
directory that contains a subdirectory for each build you’ve released to your teammates or to testers)
so that they’re indexed by Spotlight.

2. Create an archive containing the application binary and the tester’s provisioning profile.

In the Finder, select the two files and choose File > Compress.

Name the archive <application_name> for <device_name>.zip. For example, MyTestApp for
Anna Haro.zip.

3. Send the archive to your tester.

In the Finder, select the archive and choose Finder > Services > Mail > Send File.

In the body of the message make sure to include your application’s target iPhone OS release. If the
tester’s iPhone OS version is earlier than the one for which your application was built, they will not be
able to install the application on their device.

Adding Symbol Information to Crash Logs from Testers

To add symbol information to crash logs (also known as symbolicating) after receiving them from testers:

1. In the Organizer, select a development device in the Devices list.

2. Drag the crash logs to the Crash Logs pane.

54 Adding Symbol Information to Crash Logs from Testers
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Publishing Applications for Testing

The two iPhone OS runtime environments are the iPhone simulation environment and the iPhone device
environment. You use the former to test your application on your Mac, and the latter to test it on a device.
These environments are fundamentally different; therefore, when using technology that’s implemented
differently in the two environments, such as OpenGL ES, you need to tweak your code so that some of it runs
in iPhone Simulator application but not on a device. You may also need to link to different frameworks to
obtain the same functionality in the simulator and a device, such as when you use the CFNetwork framework.

This chapter shows how to target code to iPhone Simulator or a device and how to link to frameworks or
libraries depending on whether the active SDK belongs to the iPhone Simulator SDK family or the iPhone
Device SDK family.

Compiling Source Code Conditionally for iPhone Applications

There may be times when you need to run code on the simulator but not on a device, and the other way
around. On those occasions, you can use the preprocessor macros TARGET_OS_IPHONE and
TARGET_IPHONE_SIMULATOR to conditionally compile code.

Listing 9-1 shows how to use the TARGET_IPHONE_SIMULATOR macro to determine whether code meant
for iPhone OS is being compiled for the simulator or devices.

Listing 9-1 Determining whether you’re compiling for the simulator

// Set hello to "Hello, <device or simulator>"!
#if TARGET_IPHONE_SIMULATOR
 NSString *hello = @"Hello, iPhone simulator!";
#else
 NSString *hello = @"Hello, device!";
#endif

Listing 9-2 shows how to use the TARGET_OS_IPHONE macro in a source to be shared between Mac OS X
and iPhone OS.

Listing 9-2 Determining whether you’re compiling for iPhone OS

#if TARGET_OS_IPHONE
 #import <UIKit/UIKit.h>
#else
 #import <Cocoa/Cocoa.h>
#endif

The TARGET_OS_IPHONE and TARGET_IPHONE_SIMULATOR macros are defined in the
TargetConditionals.h header file.

Compiling Source Code Conditionally for iPhone Applications 55
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Conditional Compilation and Linkage

Linking Frameworks Conditionally for iPhone Applications

There may be occasions when you need to configure your application target so that it links against one
framework to run on the simulator and a different framework to run on a device. For example, if you need
to use the OpenAL framework to deliver 3D sound in your iPhone application, you link against it when
building using the iPhone Device SDK family; when building using the iPhone Simulator SDK family, you
don’t link against the OpenAL framework because this SDK family doesn’t include it.

To link a framework only when when using a particular SDK:

1. In your project’s Group & Files list, double-click your application target to open the target Info window.

2. Click Build to display the Build pane.

3. From the Configuration pop-up menu, choose All Configurations.

4. From the Show pop-up menu, choose All Settings.

5. In the build setting lists, scroll to the Linking group.

6. Select the Other Linker Flags build setting.

56 Linking Frameworks Conditionally for iPhone Applications
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Conditional Compilation and Linkage

7. From the Action menu (the gear icon at the bottom-left corner of the window), choose Add Build Setting
Condition.

A build setting condition appears below the build setting title.

8. Set the SDK condition.

From the Any SDK pop-up menu, choose the SDK under which you want the build setting specification
to apply.

9. Set the build setting value.

a. Click the Value cell to the right of the Architecture condition (which you should leave as Any
Architecture).

Linking Frameworks Conditionally for iPhone Applications 57
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Conditional Compilation and Linkage

b. Enter -framework <framework_name> into the Value cell.

If you need to, you can add another condition to the Other Linker Flags build setting to specify a different
SDK and framework.

For more information about editing build settings, see “Editing Build Settings” in Xcode Project Management
Guide.

58 Linking Frameworks Conditionally for iPhone Applications
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 9

Conditional Compilation and Linkage

Here are some common questions developers ask about iPhone Simulator:

 ■ Can GCC 4.2 be used with the iPhone Simulator SDK?

No.

 ■ Does the iPhone Simulator application run on network home directories?

No.

 ■ Do Objective-C properties need to be backed up by instance variables or accessor methods for them to
work?

Yes.

 ■ Why do curl transitions appear as fade transitions iPhone Simulator?

Because Mac OS X doesn’t support curl transitions.

 ■ Do static libraries need to be code-signed before being used in an iPhone application?

No.

59
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

iPhone Development FAQ

60
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 10

iPhone Development FAQ

This appendix provides instructions to testers about the procedures to follow to test your iPhone applications
on their devices.

You may send these instructions, along with any special tasks needed to test your application, to customers
interested in testing your application.

Sending Your Device ID to Developers

Before a developer can send you an application for testing, they must register your device under their iPhone
Developer Program.

To send your device ID to a developer for test-program registration:

1. Launch iTunes.

2. Connect your device to your computer.

3. Select the device in the Devices list.

4. In the Summary pane, click the Serial Number label. It changes to Identifier.

5. Choose Edit > Copy.

6. Email your device identifier to the developer.

Be sure to include your name and device name in the email.

Installing an Application for Testing

After being successfully registered in a developer’s testing program, the developer will send you an archive
containing two files: the application and a provisioning profile. You need to install both files into iTunes to
be able run the application on your device.

After opening the archive:

1. Drag the provisioning profile (the file with the .provision extension) to the Library group.

2. Drag the application (the file with the .app or .exe extension) to the Library group.

The application appears in the Applications list.

3. Sync your device.

Sending Your Device ID to Developers 61
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Instructions for Application Testers

If the version of iPhone OS on your device is earlier than the test application can run on, you need to
update your device with the current release of iPhone OS.

Sending Crash Reports to Developers

When the application you’re testing crashes, iPhone OS creates a record of that event. The next time you
connect your device to iTunes, iTunes downloads those records (known as crash logs) to your computer. To
help get the problem fixed, you should send crash logs of the application you’re testing to its developer.

Sending Crash Reports from Macs

To send crash logs to developers:

1. In the Finder, open a new window.

2. Choose Go > Go to Folder.

3. Enter ~/Library/Logs/CrashReporter/MobileDevice.

4. Open the folder named after your device’s name.

5. Select the crash logs named after the application you’re testing.

6. Choose Finder > Services > Mail > Send File.

7. In the New Message window, enter the developer’s email address in the To field and
<application_name> crash logs from <your_name> (for example, MyTestApp crash logs
from Anna Haro) in the Subject field.

8. Choose Message > Send.

9. In the Finder, you may delete the crash logs you sent to avoid sending duplicate reports later.

Sending Crash Reports from Windows

To send crash logs to developers, enter the crash log directory (Listing A-1 and Listing A-2) in the Windows
search field, replacing <user_name> with your Windows user name.

Listing A-1 Crash log storage on Windows Vista

C:\Users\<user_name>\AppData\Roaming\Apple
computer\Logs\CrashReporter/MobileDevice

Listing A-2 Crash log storage on Windows XP

C:\Documents and Settings\<user_name>\Application Data\Apple
computer\Logs\CrashReporter

62 Sending Crash Reports to Developers
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Instructions for Application Testers

Open the folder named after your device’s name and send the crash logs for the application you’re testing
in an email message using the subject-text format<application_name> crash logs from <your_name>
(for example, MyTestApp crash logs from Anna Haro) to the application’s developer.

Sending Crash Reports to Developers 63
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Instructions for Application Testers

64 Sending Crash Reports to Developers
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Instructions for Application Testers

active build configuration The build configuration
used to build a product. See also build configuration.

active SDK The SDK used to build a product and the
runtime environment on which the product is to run.
See also SDK family.

Apple Developer Connection (ADC) A program that
lets you access the iPhone Dev Center, which provides
access to documentation, tools, and resources needed
to develop iPhone applications. See also iPhone
Developer Program.

application ID A string that identifies an iPhone
application or a set of iPhone applications from one
vendor. They are similar to bundle identifiers. This is
an example application ID:
GFWOTNXFIY.com.mycompany.MyApp.

base SDK Project setting that specifies the default
SDK to use when building the project’s targets.
Targets can override this setting with the iPhone OS
Deployment Target build setting.

build configuration A named collection of build
settings that build one or more products in a project
in different for specific purposes—for example, for
debugging or for release.

certificate signing request (CSR) File that contains
personal information used to generate a development
certificate. Certificate signing requests are created by
the Keychain Access application.

code completion A shortcut that automatically
suggests likely completions as you type an identifier
or a keyword. The suggestions are based on the text
you type and the surrounding context within the file.

development certificate File that identifies an
iPhone application developer. Xcode uses
development certificates to sign application binaries.

instrument A data-gathering agent developed using
the Instruments application. Instruments collect
performance information about an application or an
entire system.

Instruments application A performance analysis tool
used to gather and mine application-performance
data.

iPhone Dev Center An Apple developer center that
provides all the resources needed to develop iPhone
applications. Access to this developer center requires
an ADC membership. See also Apple Developer
Connection.

iPhone Developer Program A program that allows
you to develop iPhone applications, test them on
devices, and distribute them to your customers
through the App Store.

iPhone Simulator application An application that
simulates the iPhone OS runtime environment and
user experience in Mac OS X for testing iPhone
applications in early stages of development.

Program Portal A restricted-access area of the iPhone
Dev Center that allows you to configure devices to
test your iPhone applications

project window A window that displays and
organizes the files that make up an Xcode project.

provisioning profile A file that allows applications
in development to be installed on an iPhone
OS–based device. It contains one or more
development certificates, an application ID, and one
or more device IDs

SDK family Group of SDK releases used to build
software products for a particular Apple platform. The
available SDK families are iPhone Device SDK, iPhone
Simulator SDK, and Mac OS X SDK.

65
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

Glossary

test provisioning profile A provisioning profile
issued to users not on an iPhone application
developer team. It allows them to install and test
applications that have not been published to the App
Store.

Xcode A set of tools and resources used to develop
iPhone and Mac applications.

Xcode application The main application of the Xcode
integrated development environment (IDE). It
manages the other applications that are part of Xcode
and provides the main user interface used to develop
software products.

66
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to iPhone Development Guide.

NotesDate

Made minor content additions.2009-01-06

Explained that iPhone Simulator binaries can be used on only one release of
the simulator.

Added information about new iPhone Simulator features.2008-11-14

Added “Adding the iTunes Artwork to Your Application” (page 52).

Added information about the Simulate Memory Warning and Toggle In-Call
Status Bar commands to “Manipulating the Hardware” (page 31).

Added “Core Location Functionality” (page 33).

Added information about using static libraries in iPhone applications to “Creating
an iPhone Project” (page 12).

New document that describes how to develop iPhone applications using Xcode.2008-10-15

Incorporates content previously published in iPhoneOSProgrammingGuide and
iPhone Simulator Programming Guide.

67
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
2009-01-06 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	iPhone Development Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	The Development Process
	Essential Development Tasks
	Creating an iPhone Project
	Editing Code
	Using Code Completion
	Accessing Documentation
	Building and Running Your Application
	Measuring Application Performance
	Further Exploration

	Tutorial: Hello, World!
	Create the Project
	Write the Code
	Run the Application
	Further Exploration

	Running Applications
	Setting Your Application’s Target iPhone OS Release
	Setting the Active SDK
	Setting the Active Build Configuration
	Building Your Application
	Running Your Application
	Streamlining the Build-and-Run Workflow
	Managing Application Data
	Further Exploration

	Using iPhone Simulator
	Manipulating the Hardware
	Performing Gestures
	Installing Applications
	Uninstalling Applications
	Resetting Content and Settings
	Core Location Functionality
	iPhone Simulator File System on Host
	Further Exploration

	Managing Devices
	Preparing Devices for Development
	Setting Your Application ID
	Registering Your Device with the Program Portal
	Installing iPhone OS on Your Device
	Obtaining Your Development Certificate
	Adding Your Development Certificate to Your Keychain
	Obtaining Your Provisioning Profile
	Adding Your Provisioning Profile to the Xcode Organizer
	Installing Your Provisioning Profile on Your Device

	Restoring System Software
	Running Applications on a Device
	Viewing Console and Crash Logs
	Capturing Screen Shots
	Managing Your Digital Identifications

	Debugging Applications
	General Debugging Tasks
	Memory Leaks

	Tuning Applications
	The Instruments Application
	The Shark Application

	Publishing Applications for Testing
	Adding Testers to Your Team
	Adding the iTunes Artwork to Your Application
	Distributing Your Application to Testers
	Adding Symbol Information to Crash Logs from Testers

	Conditional Compilation and Linkage
	Compiling Source Code Conditionally for iPhone Applications
	Linking Frameworks Conditionally for iPhone Applications

	iPhone Development FAQ
	Appendix A: Instructions for Application Testers
	Sending Your Device ID to Developers
	Installing an Application for Testing
	Sending Crash Reports to Developers
	Sending Crash Reports from Macs
	Sending Crash Reports from Windows

	Glossary
	Revision History

